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Recursion
2

Arises in two forms in computer scienceArises in two forms in computer science

We’ll explore bothWe ll explore both
Recursion as a mathematical tool for defining a 
function in terms of its own value in a simpler casefunction in terms of its own value in a simpler case

Recursion as a programming tool.  You’ve seen this p g g
previously but we’ll take it to mind-bending 
extremes (by the end of the class it will seem easy!)



Recursion as a math techniqueRecursion as a math technique
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Broadly, recursion is a powerful technique for y, p q
specifying functions, sets, and programs

Example recursively-defined functions and programs
factorial 
combinationscombinations
exponentiation (raising to an integer power)

Example recursively-defined sets
grammars 

iexpressions
data structures (lists, trees, ...)



The Factorial Function (n!)The Factorial Function  (n!)
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Define n! = n·(n−1)·(n−2)···3·2·1     read: “n factorial”
E.g., 3! = 3·2·1 = 6

By convention, 0! = 1
The function int → int that gives n! on input n is called 
the factorial function



The Factorial Function (n!)The Factorial Function  (n!)
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n! is the number of permutations of n distinct objects
Th i j t t ti f bj t 1! 1There is just one permutation of one object.  1! = 1
There are two permutations of two objects:  2! = 2

1 2    2 1
There are six permutations of three objects:  3! = 6

1 2 3     1 3 2     2 1 3     2 3 1     3 1 2     3 2 1

If n > 0 n! = n (n 1)!If n > 0,  n! = n·(n − 1)!



Permutations of
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Permutations of 
non orange blocksnon-orange blocks

Each permutation of the three non-
orange blocks gives four permutations 
when the orange block is included

Total number = 4·3! = 4·6 = 24:  4!

e t e o a ge b oc s c uded



Observation
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One way to think about the task of permutingOne way to think about the task of permuting 
the four colored blocks was to start by 
computing all permutations of three blocks, p g p ,
then finding all ways to add a fourth block

And this “explains” why the number of 
permutations turns out to be 4! 
Can generalize to prove that the number of 

t ti f bl k i !permutations of n blocks is n!



A Recursive Programg
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0! = 1

n! = n·(n−1)!,  n > 0
Execution of fact(4)

fact(4) 24

static int fact(int n) { 2

6
fact(3)

static int fact(int n) {
if (n = = 0)

return 1;
l

1

2
fact(2)

else
return n*fact(n-1);

}
1

fact(1)

fact(0)fact(0)



General Approach to Writing 
Recursive FunctionsRecursive Functions
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1 Try to find a parameter say n such that the1. Try to find a parameter, say n, such that the 
solution for n can be obtained by combining 
solutions to the same problem using smaller 
values of n (e g (n 1) in our factorial example)values of n (e.g., (n-1) in our factorial example)

2. Find base case(s) – small values of n for which2. Find base case(s) small values of n for which 
you can just write down the solution (e.g., 0! = 1)

3. Verify that, for any valid value of n, applying the 
reduction of step 1 repeatedly will ultimately hit 
one of the base cases    



A cautionary notey
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Keep in mind that each instance of yourKeep in mind that each instance of your 
recursive function has its own local variables
Also, remember that “higher” instances are 
waiting while “lower” instances run

Not such a good idea to touch global variables 
from within recursive functions

Legal but a common source of errorsLegal… but a common source of errors
Must have a really clear mental picture of how 
recursion is performed to get this right!p g g



The Fibonacci Function
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Mathematical definition:Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n − 1) + fib(n − 2),  n ≥ 2

two base cases!

( ) ( ) ( ),

Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, 
…

static int fib(int n) {
if (n == 0) return 0;

Fibonacci (Leonardo 
Pisano) 1170−1240?

( ) ;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

Statue in Pisa, Italy
Giovanni Paganucci

1863



Recursive ExecutionRecursive Execution
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static int fib(int n) {
if (n == 0) return 0;( ) ;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

fib(4)Execution of fib(4):

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)



One thing to noticeg
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This way of computing the Fibonacci functionThis way of computing the Fibonacci function 
is elegant, but inefficient
It “recomputes” answers again and again!It recomputes  answers again and again!
To improve speed, need to save 
known answers in a table!

fib(4)

known answers in a table!
Called a cache

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)



Adding caching to our solutiong g

Before: After
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Before: After

static int fib(int n) {
if (n == 0)

ArrayList<boolean> known = new ArrayList<boolean>;
ArrayList<int> cached = new ArrayList<cached>;
static int fib(int n) {

return 0;
else if (n == 1)

return 1;
else

int v;
if(known[n])

return cached[n];
if (n == 0)

return fib(n-1) + fib(n-2);
} 

v = 0;
else if (n == 1)

v = 1;
else

v = fib(n-1) + fib(n-2);
known[n] = true;
cached[n] = v;
return v;

} 



Notice the development processp p
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We started with the idea of recursionWe started with the idea of recursion
Created a very simple recursive procedure
Noticed it will be slow because it wastefullyNoticed it will be slow, because it wastefully 
recomputes the same thing again and again
So made it a bit more complex but gained a lotSo made it a bit more complex but gained a lot 
of speed in doing so

This is a common software engineering pattern



Combinations 
(a k a Binomial Coefficients)(a.k.a. Binomial Coefficients)
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How many ways can you choose r items fromHow many ways can you choose r items from 
a set of n distinct elements?   (  )  “n choose r”
(  ) = number of 2-element subsets of {A,B,C,D,E}

n
r

5
2( )

2-element subsets containing A: 
{A,B}, {A,C}, {A,D}, {A,E}

(  )4
1

2

2-element subsets not containing A: {B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

Therefore,        =        +
(  )4

2
( )4

1 ( )4
2( )5

2e e o e,
… in perfect form to write a recursive function!

(  )1 (  )2(  )2



CombinationsCombinations
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= + , n > r > 0(  )n
r (    )n−1

r (    )n−1
r−1          ,  n  r  0

= 1
= 1

( ) ( ) ( )
(  )n

n

( )n
0 Can also show that               =(  )n

r
n!

r!(n−r)! 1(  )0

(  )0
0 1Pascal’s

r!(n−r)!

( )0

(  )1
1(  )1

0

( )2
2( )2

1( )2
0

1      1

1 2 1=
triangle

(  )2(  )1(  )0

(  )3
3(  )3

2(  )3
1(  )3

0

( )4( )4( )4( )4( )4

1      2      1

1      3      3      1

1 4 6 4 1(  )4
4(  )4

3(  )4
2(  )4

1(  )4
0 1      4      6      4      1



Binomial CoefficientsBinomial Coefficients
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Combinations are also called binomial coefficients
because they appear as coefficients in the expansion

of the binomial power (x+y)n :

nn n n

of the binomial power (x+y)n :

(x + y)n =        xn +       xn−1y +       xn−2y2 + ··· +        yn

∑ ( )n

(  )n
n(  )n

0 (  )n
1 (  )n

2

n

=  ∑ xn−iyi(  )n
i

i = 0

18



Combinations Have Two Base Cases
19

= +         ,  n > r > 0(  )n
r (    )n−1

r (    )n−1
r−1

Two base cases

,
= 1
= 1

( ) ( ) ( )
(  )n

n

(  )n
0

C i ith i ht b b

Two base cases( )

Coming up with right base cases can be 
tricky!
G l idGeneral idea:

Determine argument values for which 
recursive case does not applyrecursive case does not apply
Introduce a base case for each one of these



Recursive Program for 
CombinationsCombinations

20

n 1 1
= +         ,  n > r > 0

= 1
(  )n

r (    )n−1
r (    )n−1

r−1

(  )n
n

= 1(  )n
0

static int combs(int n, int r) {   //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}



Exercise for the reader (you!)(y )
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Modify our recursive program so that it cachesModify our recursive program so that it caches 
results
Same idea as for our caching version of the g
fibonacci series

Question to ponder: When is it worthwhile to 
adding caching to a recursive function?

Certainly not always…
Must think about tradeoffs: space to maintain the 
cached results vs speedup obtained by having themcached results vs speedup obtained by having them



Positive Integer PowersPositive Integer Powers
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an = a·a·a···a (n times)( )

Alternate description:Alternate description:
a0 = 1
an+1 = a·ana  a a
static int power(int a, int n) {

if (n == 0) return 1;
else return a*power(a,n-1);

}



A Smarter Version
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Power computation:
a0 = 1a0 = 1
If n is nonzero and even, an = (an/2)2

If n is odd, an = a·(an/2)2

Java note: If x and y are integers “x/y” returns the integer part of theJava note: If x and y are integers, x/y  returns the integer part of the 
quotient

Example: 
a5 =  a·(a5/2)2 =  a·(a2)2 =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!

What if n were larger?What if n were larger? 
Savings would be more significant

This is much faster than the straightforward computation
Straightforward computation: n multiplicationsStraightforward computation:  n multiplications
Smarter computation:  log(n)  multiplications



Smarter Version in Java
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n = 0:  a0 = 1
n nonzero and even:  an = (an/2)2

n nonzero and odd:  an = a·(an/2)2

parameters
local variable

static int power(int a, int n) {
if (n == 0) return 1;

local variable

if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;return halfPower halfPower a;

}

The method has two parameters and a local variableThe method has two parameters and a local variable
Why aren’t these overwritten on recursive calls?



I l t ti f R i M th dImplementation of Recursive Methods
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Key idea:Key idea: 
Use a stack to remember parameters and local 
variables across recursive calls
Each method invocation gets its own stack frame

A stack frame contains storage forA stack frame contains storage for
Local variables of method
Parameters of method
Return info (return address and return value)
Perhaps other bookkeeping info



StacksStacks
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stack grows

top element
top-of-stack

pointer

stack grows

Like a stack of dinner plates
You can push data on top or pop

2nd element
3rd element

p p p p
data off the top in a LIFO (last-in-
first-out) fashion
A queue is similar, except it is 
FIFO (fi i fi )

...

bottom
...

FIFO (first-in-first-out)bottom 
element



St k FStack Frame
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A new stack frame is 
pushed with each 

i llrecursive call

The stack frame is
a stack frame

local variables

parametersThe stack frame is 
popped when the 
method returns

return info

parameters

Leaving a return value 
(if there is one) on top 
of the stack



Example: power(2, 5)p p ( , )
28

(hP = ) ? (hP = ) 1
(retval = ) 1

return info

(a = ) 2
(n = ) 1

(hP = ) ?

return info

(a = ) 2
(n = ) 1
(hP  ) 1

(retval = ) 2

(a = ) 2
(n = ) 2

(hP = ) ?

(a = ) 2
(n = ) 2

(hP = ) ?

(a = ) 2
(n = ) 2
(hP = ) 2

(a = ) 2
(n = ) 2
(hP = ) ?

(retval = ) 2

(n = ) 5
(hP = ) ?

(n = ) 5
(hP = ) ?

return info

(n = ) 5
(hP = ) ?

return info

(n = ) 5
(hP = ) 4

(n = ) 5
(hP = ) ?

return info

(n = ) 5
(hP = ) ?

return info
(retval = ) 4

return info

(a = ) 2

return info

(a = ) 2

return info

(a = ) 2

return info

(a = ) 2

return info

(a = ) 2

return info

(a = ) 2

(retval = ) 32



How Do We Keep Track?How Do We Keep Track?
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At any point in execution, 
many invocations of power

Answer: 
Frame Base Registermany invocations of power

may be in existence
Many stack frames (all for 
power) may be in Stack

Frame Base Register
When a method is invoked, a 
frame is created for that method 
invocation, and FBR is set to point power) may be in Stack

Thus there may be several 
different versions of the 
variables a and n

, p
to that frame
When the invocation returns, FBR
is restored to what it was before 
th i tivariables a and n

How does processor know 
which location is relevant at

the invocation
How does machine know what 
value to restore in the FBR?

which location is relevant at 
a given point in the 
computation?

This is part of the return info in the 
stack frame



FBR
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Computational activity takes place (hP = ) ?
only in the topmost (most recently 
pushed) stack frame

return info

(a = ) 2
(n = ) 1

old FBR

t i f

(a = ) 2
(n = ) 2

(hP = ) ?

i f

(a = ) 2
(n = ) 2

(hP = ) ?

(a = ) 2
(n = ) 5

(hP = ) ?

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info
old FBRold FBR

return info

(a = ) 2
return info

(a  ) 2

return info

(a  ) 2

old FBRold FBR old FBR

FBR FBR FBR



ConclusionConclusion
31

Recursion is a convenient and powerful way to define 
functions

P bl th t i t bl ft bProblems that seem insurmountable can often be 
solved in a “divide-and-conquer” fashion:

Reduce a big problem to smaller problems of the same kind, g p p ,
solve the smaller problems
Recombine the solutions to smaller problems to form 
solution for big problemg p

Important application (next lecture): parsing


