
JAVA REVIEW
Lecture 2
CS2110 Fall 2010

Think about representing graphsp g g p

Last time we discussed idea of abstractingLast time we discussed idea of abstracting
problems such as implementing a GPS
tracking device for a bicycle into graphg y g p

Might imagine a “class” representing graphs
Other classes representing nodes, edges
Graph operations like shortest path used to solve
problems like recommending the best route home

But are computer programming languages well
matched to this sort of thing?

Machine Languageg g

Used with the earliest Example code
electronic computers (1940s)

Machines use vacuum tubes
instead of transistors

0110 0001 0000 0110
add reg1 6

Programs are entered by
setting switches or reading
punch cards

An idea for improvement
Use words instead of

bAll instructions are numbers numbers
Result: Assembly Language

Assembly Languagey g g
Idea: Use a program (an

bl) t tassembler) to convert
assembly language into
machine code
Early assemblers were someEarly assemblers were some
of the most complicated code
of the time (1950s)

Example code
ADD R1 6ADD R1 6
MOV R1 COST
SET R1 0
JMP TOP
Idea for improvement

Let’s make it easier for humans by
designing a high level computer
languageg g

Result: high-level languages

High-Level Languageg g g
Idea: Use a program (a

il i t t)
The whole concept was
i iti ll t i lcompiler or an interpreter)

to convert high-level code
into machine code

initially controversial

Pro
Easier for humans to write,
read, and maintain coderead, and maintain code

Con
The resulting program was
usually less efficient than y
the best possible
assembly-code

Waste of memory
Waste of timeWaste of time

FORTRAN
Initial version developed in
1957 by IBM

Example code
1957 by IBM

C SUM OF SQUARES
ISUM = 0
DO 100 I=1,10
ISUM ISUM + I*I

FORTRAN introduced many
hi h l l l

ISUM = ISUM + I*I
100 CONTINUE

high-level language
constructs still in use today

Variables & assignment
LoopsLoops
Conditionals
Subroutines
Comments

ALGOL

Sample code

comment Sum of squares
begin

ALGOL

begin
integer i, sum;
for i:=1 until 10 do

sum := sum + i*i;ALGOL
= ALGOrithmic Language
Developed by an international
committee ALGOL 60 i l d d i

end

committee
First version in 1958 (not
widely used)

ALGOL 60 included recursion
Pro: easier to design clear,
succinct algorithms
Con: too hard to implement; too

Second version in 1960
(become a major success)

Con: too hard to implement; too
inefficient

COBOL
COBOL = COBOL included the idea of
COmmon Business Oriented
Language
Developed by the US
government (about 1960)

records (a single data
structure with multiple fields,
each field holding a value)

government (about 1960)
Design was greatly influenced
by Grace Hopper

Goal: Programs should look likeGoal: Programs should look like
English

Idea was that anyone should
be able to read andbe able to read and
understand a COBOL
program

Simula & Smalltalk
These languages
i t d d d l i dintroduced and popularized
Object Oriented
Programming (OOP)

Simula was developed inSimula was developed in
Norway as a language for
simulation in the 60s
Smalltalk was developed
at Xerox PARC in the 70sat Xerox PARC in the 70s

These languages included
Classes
ObjectsObjects
Subclassing and
inheritance

Java – 1995 (James Gosling)(g)

Java includes
Assignment statements,
loops, conditionals from
FORTRAN (but syntax (y
from C)

Recursion from ALGOLRecursion from ALGOL

Fields from COBOL

OOP from Simula &
Smalltalk

JavaTM and logo © Sun Microsystems, Inc.

In theory, you already know Java…y, y y

Classes and objectsClasses and objects
Static vs instance fields and methods
Primitive vs reference typesyp
Private vs public vs package
Constructors
Method signatures
Local variables
Arrays
Subtypes and Inheritance, Shadowingyp , g

… but even so

Even standard Java features have someEven standard Java features have some
subtle aspects relating to object orientation
and the way the type system worksy yp y
Let’s touch on a few of these today
We picked topics that will get you thinkingWe picked topics that will get you thinking
about Java the way that we think about it!

Java is object orientedj

In most prior languages code was executedIn most prior languages, code was executed
line by line and accessed variables or record

In Java, we think of the data as being
organized into objects that come with theirorganized into objects that come with their
own methods, which are used to access them

This shift in perspective is critical p p
When coding in Java one is always thinking about
“which object is running this code?”

Object orientation saves the day!j y

For the first time we see a language in whichFor the first time we see a language in which
ideas like building a general “graph class” can
really be used to solve problems like “build y p
software for a GPS bike tracker” or “solve a
puzzle”
Object oriented languages let us express
abstract ideas, and then match them to real
problems we face in real applications

Dynamic and Staticy

Some kinds of information is “static”
There can only be one instance
Like a “global variable” in C or C++ (or assembler)
In languages like FORTRAN, COBOL most data is static.g g ,
Languages like C and C++ allow us to allocate memory at
runtime, but don’t offer a lot of help for managing it

Object-oriented information is more “dynamic”
Each object has its own private copy
When we create a new object we make new copies of theWhen we create a new object, we make new copies of the
variables it uses to keep its state

In Java this distinction becomes very importantIn Java this distinction becomes very important

Names

The role of a name is to tell us
Which class is being referenced, although sometimes this is
clear from the context
Which object is being referenced unless we’re talking aboutWhich object is being referenced, unless we re talking about
a static method or a static variable

Example
System.out.println(a.serialNumber)

out is a static field in class System
The value of System.out is an instance of a class that has anThe value of System.out is an instance of a class that has an
instance method println(int)

If an object must refer to itself, use this
thi i ithis.i = i;

The main Method

C b ll d f hCan be called from anywhere

Associated with the class; don’t need an instance (an
object) to invoke it

No return value

Method must be named main

public static void main(String[] args) {
...
}

Parameters passed to program on command line or, in
E li b d fi d i th “R ” fi ti di lEclipse, can be defined in the “Run” configuration dialog
box (which the same as the “Debug” one…)

Static methods and variables

If a method or a variable is declared “static”If a method or a variable is declared static
there will be just one instance for the class

Otherwise, we think of each object as having its , j g
own “version” of the method or variable

Anyone can call a static method or access a y
static variable
But to access a dynamic method or variable
Java needs to know which object you mean

Static methods and variables

class Foo {class Foo {
static int xyz;
static void bar(int i) { … }
int zyx;
void abc() { }

Dynamic
method abc()

Dynamic

Dynamic
method abc()

Dynamic

void abc() { … }
}

Foo a = new Foo();
Foo b = new Foo();

Foo instance
a

variable zyx

Foo instance
b

variable zyxFoo b new Foo();
a.bar(b.zyx);

static method
bar()

static variable
xyz

Class Foo

Static methods and variables
class Thing {

t ti i t l // O f th h l lstatic int s_val; // One for the whole class
int o_val; // Each object will have its own personal copy

static void s_method() // Anyone can call this
{{

s_val++; // Legal: increments the shared variable s_val
o_val = s_val; // Illegal: Which version of o_val do we mean?
o_method(s_val); // Illegal: o_method needs an object reference

}}

void o_method()
{

l // L ls_val++; // Legal
this.s_val++; // Illegal: s_val belongs to the class, not object
o_val = s_val; // Legal: same as this.o_val = s_val
s_method(); // Legal: calls the class method s_method()

m th d(); // L l: m thi m th d();o_method(); // Legal: same as this.o_method();
}

}

Avoiding troubleg

Use of static methods is discouragedUse of static methods is discouraged
Keep in mind that “main” is a static method

Hence anything main calls needs to have anHence anything main calls needs to have an
associated object instance, or itself be static

class Thing {g {
int counter;
static int sequence;

public static void main(String[] args)p (g[] g)
{

int c = ++counter; // Illegal: counter is associated with an
// object of type Thing. But which object?

int s = ++sequence; // Legal: sequence is static tooq g q
}

}

Relating Graphs to Puzzles and BikeRoutes

Java provides a way to take a more abstractedJava provides a way to take a more abstracted
idea, such as a “node in a graph” and specialize it

For example, we might have a “node in a graph p , g g p
representing a bike ride” and it would contain a GPS
coordinate, the time it was measured, the slope of
th hill th d f th id tthe hill, the cadence of the rider, etc.
These specialized graphs should support any
operation you can perform on a normal graph likeoperation you can perform on a normal graph, like
asking for a path from A to B

The basic idea

Suppose we have a package that supportsSuppose we have a package that supports
graphs and use it to represent a bike ride
Now we can ask questions that have graphNow we can ask questions that have graph
“aspects” and biking “aspects”

For example: “Find the part of my ride that was p p y
from Ithaca to Trumansburg on Route 79 via
Mecklensburg. How fast was I riding?”
“Where was my energy output highest?”

Our challengeg

We want to implement general purposeWe want to implement general purpose
packages to do things like implement graphs
and perform operations on themp p
But we also want to create specialized
versions of objects like the nodes in the j
graphs, so that we can represent BikeRoutes
and Puzzles and other nodes that have
associated state
For this we use the Class Heirarchy

Class Hierarchyy
Parent of Graph and Array and also superclass of

Graph and Array and Puzzle and BikeRoute

Object

Graph and Array and Puzzle and BikeRoute

parent and superclass of Puzzle and
BikeRoute

Array

BikeRoute
subclass of Object

Graph Array
subclass of Graph and

Object

. . .

Puzzle BikeRoute

Every class (except Object) has a unique
immediate superclass, called its parent

Using the class hierarchyg y

Any operation that works on a “graph” can alsoAny operation that works on a graph can also
be performed on a “bike route”
But bike routes can support additionalBut bike routes can support additional
operations that don’t make sense on a “puzzle”
This is a very powerful and flexible conceptThis is a very powerful and flexible concept

Constructors

Called to create new instances of a classCalled to create new instances of a class
Default constructor initializes all fields of the
class to default values (0 or null)class to default values (0 or null)

class Thing {
int val;int val;

Thing(int val) {
this.val = val; Thing one = new Thing(1);}

Thing() {
this(3);

Thing one new Thing(1);
Thing two = new Thing(2);
Thing three = new Thing();

this(3);
}

}

What about non-class variables?

Those are not automatically initialized youThose are not automatically initialized, you
need to do it yourself!
Can cause confusion this val was automaticallyCan cause confusion

class Thing {
int val;

this.val was automatically
initialized to zero, but undef has

no defined value! Yet the
declaration looks very similar! In

Thing(int val) {
int undef;
this.val = val+undef;

}

what way did it differ?

}

Thing() {
this(3);();

}
}

Finalizers

Like constructors but called when the object isLike constructors but called when the object is
deallocated
Might not happen when you expectedMight not happen when you expected

Garbage collector decides when to actually
deallocate an objectj
So objects can linger even when you no longer
have a reference to them!
For this reason, we tend not to use finalizers –
they add an undesired form of unpredictability

Static Initializers

Run once when class is loadedRun once when class is loaded
Used to initialize static objects

class StaticInit {
static Set<String> courses = new HashSet<String>();
static {

dd("CS 2110")courses.add("CS 2110");
courses.add("CS 2111");

}

public static void main(String[] args) {
...

}
}}

Static vs Instance Examplep

1616
class Widget {

static int nextSerialNumber = 10000;
int serialNumber;
Widget() {

serialNumber = nextSerialNumber++;
}
public static void main(String[] args) {public static void main(String[] args) {

Widget a = new Widget();
Widget b = new Widget();
Widget c = new Widget();
S t t i tl (i lN b)System.out.println(a.serialNumber);
System.out.println(b.serialNumber);
System.out.println(c.serialNumber);

}}
}

Names

Refer to my static and instance fields & methods by y y
(unqualified) name:

serialNumber
tS i lN bnextSerialNumber

Refer to static fields & methods in another class
using name of the classg

Widget.nextSerialNumber

Refer to instance fields & methods of another
bj t i f th bj tobject using name of the object

a.serialNumber

Overloading of Methodsg

A class can have several methods of the same name
But all methods must have different signatures
The signature of a method is its name plus the types of its
parametersparameters

Example: String.valueOf(...) in Java API
There are 9 of them:

valueOf(boolean);
valueOf(int);
valueOf(long);valueOf(long);
...

Parameter types are part of the method’s signature

Example: Overloading “compareTo”p g p

Many classes extend an object that supports an y j pp
interface called “comparable”. If you do this you
can override these methods:

equals(): a.equals(b), returns true/falseq () q (),
compareTo(): a.compareTo(b): returns -/0/+
hashCode(): a.hashCode: usually you return
data hashCode() for some data object in a thatdata.hashCode() for some data object in a that
represents a’s “value” (perhaps a string or a number)

Overriding all three methods allows Java utilities
that sort arrays to operate on your classthat sort arrays to operate on your class
But one warning: if you override these methods
you must override all of them

Primitive vs Reference Typesyp
Primitive types

int, short, long, float, byte,
char, boolean, double

Efficient
1 or 2 ords

57abc

1 or 2 words
Not an Object—unboxed

Reference typesReference types
Objects and arrays
String, int[], HashSet
Usually require more memory

•abc

y q y
Can have special value null
Can compare null with ==, !=
Generates NullPointerException
if you try to dereference null

nonzero

57val
if you try to dereference null nullnext

Comparing Reference Typesp g yp

Comparing objects (or copying them) isn’tComparing objects (or copying them) isn t
easy!

You need to copy them element by element
Compare objects using the “equals” method,
which implements “deep equality”

Example: suppose we have
String A = “Fred”, B = “Fred”;St g ed , ed ;
What will A == B return?
Need to use A.equals(B)

False! A and B are different
strings even though their value
is the same.

Comparing Reference Typesp g yp

You can define “equals” for your own classesYou can define equals for your own classes
Do this by overriding the built in “equals”
method:method:

boolean equals(Object x);
But if you do this must also overrideBut if you do this, must also override
Object.hashCode() (more on this later)

== versus .equalsq

A few wrong and then correct examples

What you wrote How to write it correctly
"xy" == "xy" “xy".equals("xy")
"xy" == "x" + "y" "xy" equals("x" + "y")xy == x + y xy .equals(x + y)
“xy" == new String("xy“) "xy".equals(new String("xy"))

== with primitive types“Integer” is an object containingp yp

P l h d I t i k?

Integer is an object containing
an “int” as its underlying value type

Puzzle: why do Integer comparisons work?
Integer I = 7;
(I 7)? True but not obvious why!(I == 7)?
(I == new Integer(7))

True, but not obvious why!
False

… the first comparison only works because
Java auto unboxes I to compare it with int 7Java auto-unboxes I to compare it with int 7.
If it had autoboxed the 7, the comparison
would have failed! Lucky Java gets this rightwould have failed! Lucky Java gets this right...

== with primitive typesp yp

Integer I;Integer I;
(I == null)? Uninitialized
(I == 0)? Null ref. ex.

I t I I t (0)Integer I = new Integer(0);
(I == null)? False
(I == 0)? True

int i;
(i == null)? Undefined
(i == 0)? Uninitialized

static int i;
(i == null)? Undefined
(i 0)? Tr e(i == 0)? True

Arraysy

String[] a = new String[4];
Arrays are reference types
Array elements can be reference
t i iti t

g[] g[];
a[2] = "hello"

types or primitive types
E.g., int[] or String[]

a is an array, a.length is its length

a

y, g g
Its elements are
a[0], a[1], ..., a[a.length-1]
The length is fixed when the array is

null

“hello”The length is fixed when the array is
first allocated using « new » a.length = 4

Accessing Array Elements Sequentiallyg y q y

public class CommandLineArgs {
public static void main(String[] args) {

System.out.println(args.length);
// old-style
for (int i = 0; i < args.length; i++) {

System.out.println(args[i]);
}}
// new style
for (String s : args) {

System.out.println(s);
}}

}
}

Let’s Revisit the Class Hierarchyy

Parent of Graph and Array and also superclass of
Graph and Array and Puzzle and BikeRoute

Object

Graph and Array and Puzzle and BikeRoute

parent and superclass of Puzzle and
BikeRoute

Array

BikeRoute
subclass of Object

Graph Array
subclass of Graph and

Object

. . .

Puzzle BikeRoute

Every class (except Object) has a unique
immediate superclass, called its parent

Inheritance

A subclass inherits the methods of its superclass
Example: methods of the Object superclass:

equals(), as in A.equals(B)
toString(), as in A.toString()
… others we’ll learn about later in the course

… every object thus supports toString()!

Overridingg

A method in a subclass overrides a method inA method in a subclass overrides a method in
superclass if:

both methods have the same name,,
both methods have the same signature (number
and type of parameters and return type), and
both are static methods or both are instance
methods

Methods are dispatched according to the
runtime type of the actual, underlying object

Accessing Overridden Methodsg

Suppose a class S overrides a method m in itsSuppose a class S overrides a method m in its
parent

Methods in S can invoke the overridden method
i th tin the parent as

super.m()
In particular can invoke the overridden method inIn particular, can invoke the overridden method in
the overriding method! This is very useful

Caveat: cannot compose super more than
once as in

super.super.m()

Unexpected Consequencesp q

An overriding method cannot have moreAn overriding method cannot have more
restricted access than the method it overrides

class A {class A {
public int m() {...}

}
class B extends A {

private int m() {...} //illegal!
}

A foo = new B(); // upcastingA foo new B(); // upcasting
foo.m(); // would invoke private method in

// class B at runtime

… a nasty exampley p

class A {
int i = 1;
int f() { return i; }

}
class B extends A {class B extends A {

int i = 2; // Shadows variable i in class A.
int f() { return -i; } // Overrides method f in class A.

}
bli l id t t { Th “ i ” f “ ”public class override_test {
public static void main(String args[]) {

B b = new B();
System.out.println(b.i); // Refers to B.i; prints 2.

The “runtime” type of “a”
is “B”!

y p (); ; p
System.out.println(b.f()); // Refers to B.f(); prints -2.
A a = (A) b; // Cast b to an instance of class A.
System.out.println(a.i); // Now refers to A.i; prints 1;
System out println(a f()); // Still refers to B f(); prints 2;System.out.println(a.f()); // Still refers to B.f(); prints -2;

}
}

Shadowingg

Like overriding, but for fields instead of methodsg
Superclass: variable v of some type
Subclass: variable v perhaps of some other type
Method in subclass can access shadowed variable using super vMethod in subclass can access shadowed variable using super.v
Variable references are resolved using static binding (i.e., at
compile-time), not dynamic binding (i.e., not at runtime)

Variable reference r.v uses the static (declared) type of the
variable r, not the runtime type of the object referred to by r

Shadowing variables is bad medicine and should be avoided

… back to our earlier examplep

class A {
int i = 1;
int f() { return i; }

}
class B extends A {class B extends A {

int i = 2; // Shadows variable i in class A.
int f() { return -i; } // Overrides method f in class A.

}
bli l id t t { Th “d l d” “ i ”public class override_test {
public static void main(String args[]) {

B b = new B();
System.out.println(b.i); // Refers to B.i; prints 2.

The “declared” or “static”
type of “a” is “A”!

y p (); ; p
System.out.println(b.f()); // Refers to B.f(); prints -2.
A a = (A) b; // Cast b to an instance of class A.
System.out.println(a.i); // Now refers to A.i; prints 1;
System out println(a f()); // Still refers to B f(); prints 2;System.out.println(a.f()); // Still refers to B.f(); prints -2;

}
}

