Introduction

to GUIs
(Graphical User
Interfaces)

Lecture 21
CS2110
Summer 2009




Interactive Programs

iInput
e “Classic” view of computer

programs: transform inputs to
outputs, stop

output

e Event-driven programs: @ @
mteractlve_, Iong-rurmm_g ot output
= Servers interact with clients events events

= Applications interact with
user(s)

{ program




GUI Motivation

* Interacting with a program

» Program-Driven
+ Statements execute in sequential, predetermined order
+ Use keyboard or file 1/0, but program determines when that happens
¢ Usually single-threaded

= Event-Driven
* Program waits for user input to activate certain statements
+ Typically uses a GUI (Graphical User Interface)
+ Often multi-threaded

e Design...Which to pick?
» Program called by another program?
* Program used at command line?
» Program interacts often with user?
» Program used in window environment?

e How does Java do GUIs?



Java Support for Building GUIs

e Java Foundation Classes e Our main focus: Swing
= Classes for building GUIs = Building blocks of GUIs
= Major components + Windows & components
+ awt and swing + User interactions
+ Pluggable look-and-feel support = Built upon the AWT (Abstract
+ Accessibility AP Window Toolkit)
¢ Java 2D API + Java event model

+ Drag-and-drop Support
+ [nternationalization

» Java's support for cross-platform GUIs is one of its main selling
points



Java Foundation Classes

e Pluggable Look-and-Feel Support
= Controls look-and-feel for particular windowing environment
= E.g., Java, Windows, Motif, Mac
* Accessibility API
= Supports assistive technologies such as screen readers and Braille
e Java 2D
= Drawing
= Includes rectangles, lines, circles, images, ...
e Drag-and-drop

= Support for drag and drop between Java application and a native
application

* Internationalization
= Support for other languages



GUI Statics and GUI Dynamics

e Statics: what’s drawn on the screen

= Components
* buttons, labels, lists, sliders, menus, ...

= Containers: components that contain other components
+ frames, panels, dialog boxes, ...

= Layout managers: control placement and sizing of components

e Dynamics: user interactions

= Events
* button-press, mouse-click, key-press, ...
= Listeners: an object that responds to an event

= Helper classes
¢ Graphics, Color, Font, FontMetrics, Dimension, ...



Creating a Window

import javax.swing.*;

public class Basicl {

public static void main (String[] args) {
//create the window
JFrame f = new JFrame ("Basic Test!");
//quit Java after closing the window
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200, 200); //set size in pixels
f.setVisible(true); //show the window

’%} Basic Test! E]@W




Creating a Window Using a Constructor

import javax.swing.¥*;
public class Basic2 extends JFrame {

public static void main (String[] args) {
new Basic2() ;

}

public Basic2 () {
setTitle ("Basic Test2!"); //set the title
//quit Java after closing the window
setDefaultCloseOperation (JFrame. EXIT ON CLOSE) ;
setSize (200, 200); //set size in pixels
setVisible (true); //show the window




A More Extensive Example

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton ("Push Me!");
private JLabel label = new JLabel ("Count: " + count);

public Intro() ({
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setLayout (new FlowLayout (FlowLayout.LEFT)); //set layout manager
add (myButton); //add components
add (label) ;
label.setPreferredSize (new Dimension (60, 10));

myButton.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {

count++;
label.setText ("Count: " + count);

}
}) = M=%
Zounk: 1

pack() ;
setVisible (true) ;

}

public static void main(String[] args) ({

try {
UIManager . setLookAndFeel (UIManager.getSystemLookAndFeelClassName()) ;

} catch (Exception exc) ({}
new Intro();




GUI Statics

e Determine which components you want

e Choose a top-level container in which to put the
components (JFrame IS often a good choice)

* Choose a layout manager to determine how
components are arranged

e Place the components
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Components = What You See

 Visual part of an interface

e Represents something with position and size

e Can be painted on screen and can receive events
e Buttons, labels, lists, sliders, menus, ...
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Component Examples

import javax.swing.*;
import java.awt.*;

public class ComponentExamples extends JFrame ({

public ComponentExamples () {
setLayout (new FlowLayout (FlowLayout.LEFT)) ;

add (new
add (new
add (new
add (new
add (new
add (new

setDefau
pack() ;
setVisib

}

public stat
try {
UIMan

} catch
new Comp

JButton ("Button")) ;

JLabel ("Label")) ;

JComboBox (new String[] { "A", "B",
JCheckBox ("JCheckBox")) ;
JSlider (0, 100));
JColorChooser()) ;
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More Components

e JFileChooser: allows choosing a file
e JLabel: a simple text label

e JTextArea: editable text

e JTextField: editable text (one line)

e JScrollBar: a scrollbar

e JPopupMenu: a POp-up menu

e JProgressBar: a progress bar

e Lots more!
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Contalners

e A container is a component that
= Can hold other components
» Has a layout manager

* Heavyweight vs. lightweight

= A heavyweight component interacts directly with the host system
» JWindow, JFrame, and JDialog are heavyweight

= Except for these top-level containers, Swing components are mostly lightweight

e There are three basic top-level containers
» JWindow: top-level window with no border
» JFrame: top-level window with border and (optional) menu bar
» JDialog: used for dialog windows

* An important lightweight container
» JPanel: used mostly to organize objects within other containers
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A Component Tree

JFrame
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Layout Managers

* A layout manager controls placement and sizing of components in a container

= If you do not specify a layout manager, the container will use a default:
¢ JPanel default = FlowLayout
¢ JFrame default = BorderLayout

* Five common layout managers:
= BorderLayout, BoxLayout, FlowLayout, GridBagLayout, GridLayout

* General syntax: container.setlLayout (new LayoutMan()) ;

e Examples:
JPanel pl

new JPanel (new BorderLayout()) ;

JPanel p2 = new JPanel() ;
p2.setLayout (new BorderLayout()) ;
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Some Example Layout Managers

* FlowLayout

= Components placed from left to right in order added
= When a row is filled, a new row is started
= Lines can be centered, left-justified or right-justified (see FlowLayout constructor)

* GridLayout

= Components are placed in grid pattern (number of rows & columns specified in
constructor)

= Grid is filled left-to-right, then top-to-bottom

* BorderLayout
= Divides window into five areas: North, South, East, West, Center

e Adding components
* FlowLayout and GridLayout USE container.add (component)

* BorderLayout USES container.add (component, index) Where index is one of

¢ BorderLayout.North, BorderLayout.South, BorderLayout.East

"7
BorderLayout.West, BorderLayout.Center



FlowLayout Example

import javax.swing.*;
import java.awt.*;

public class Staticsl {

public static void main(§gﬁmmﬂ

BEX]

new S1GUI () ;

Button 1

}

Button 2

Button 3

Button 4

Button 5

} Button 6

Button 7

Button 8

class S1GUI {
private JFrame f£f;

public S1GUI () {

f = new JFrame("Staticsl") ;

f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

f.setSize (500, 200) ;

f.setLayout (new FlowLayout (FlowLayout.LEFT)) ;

for (int b = 1; b < 9; b++)

f.add (new JButton("Button " + b)),

f.setVisible (true) ;
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BorderLayout Example

import javax.swing.*;
import java.awt.*;

public class Statics2 {
public static void main (String[] args) { new

}

class ColoredJPanel extends JPanel {
Color color;
ColoredJPanel (Color color) {
this.color = color;

}

public void paintComponent (Graphics g) {
g.setColor(color) ;
g.fillRect (0, O, 400, 400);

}

class S2GUI extends JFrame {
public S2GUI() {
setTitle("Statics2");
setDefaultCloseOperation (JFrame.EXIT ON CIL
setSize (400, 400) ;

add (new
add (new
add (new
add (new
add (new

< Statics2

=/ 2/ES

ColoredJPanel (Color.RED) , BorderLayout.NORTH) ;
ColoredJPanel (Color.GREEN) , BorderLayout.SOUTH) ;
ColoredJPanel (Color.BLUE) , BorderLayout. WEST) ;
ColoredJPanel (Color. YELLOW) , BorderLayout.EAST) ;
ColoredJPanel (Color.BLACK) , BorderLayout.CENTER) ;

setVisible (true) ;
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GridLayout Example

. . . iy =
import javax.swing.*; £ Statics3
import java.awt.*;

public class Statics3 {
public static void main(String[] args) { new S3GUI(); }
}

class S3GUI extends JFrame {
static final int DIM = 25;
static final int SIZE = 12;
static final int GAP = 1;

public S3GUI() {
setTitle ("Statics3") ;
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setLayout (new GridLayout (DIM, DIM, GAP, GAP)) ;

for (int i = 0; i < DIM * DIM; i++) add(new MyPanel());
pack() ;
setVisible (true) ;

}

class MyPanel extends JPanel ({
MyPanel () { setPreferredSize(new Dimension(SIZE, SIZE)); }
public void paintComponent (Graphics g) {
float gradient =

1f - ((float)Math.abs(getX() - get¥Y()))/(float) ((SIZE + GAP) * DIM);

g.setColor (new Color (0f, 0f, gradient));
g.fillRect (0, 0, getWidth (), getHeight())
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More Layout Managers

CardLayout
= Tabbed index card look from Windows

GridBagLayout
= Most versatile, but complicated

Custom
= Can define your own layout manager
= But best to try Java's layout managers first...

Null
= No layout manager
* Programmer must specify absolute locations

* Provides great control, but can be dangerous because of platform
dependency
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AW

e AWT
= |nitial GUI toolkit for Java

- and Swing

e Swing
= More recent (since Java 1.2)

= Provided a “Java” look and feel GUI toolkit

» Basic API: java.awt. *

» Added functionality (new
components)

= Supports look and feel for
various platforms (Windows,
Motif, Mac)

= Basic API: javax.swing.*

* Did Swing replaced AWT?

» Not quite: both use the AWT
event model
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Code Examples

* Intro.java

= Button & counter
e Basicl.java

= Create a window
e Basic2.java

= Create a window using a
constructor

e Calculator.java

= Shows use of JOptionPane
to produce standard dialogs

e ComponentExamples.java
= Sample components

e Staticsl.java
* FlowLayout example

e Statics2.java
* BorderLayout example

e Statics3.java
* GridLayout example

e LayoutDemo.java
= Multiple layouts
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GUI Statics and GUI Dynamics

e Statics: what’s drawn on the screen

= Components
* buttons, labels, lists, sliders, menus, ...

= Containers: components that contain other components
+ frames, panels, dialog boxes, ...

= Layout managers: control placement and sizing of components

e Dynamics: user interactions

= Events
* button-press, mouse-click, key-press, ...
= Listeners: an object that responds to an event

= Helper classes
¢ Graphics, Color, Font, FontMetrics, Dimension, ...
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Dynamics Overview

e Dynamics = causing and responding to actions
= \What actions? events
* Need to write code that knows what to do when an event occurs

» [n Java, you specify what happens by providing an object that
“hears” the event

+ |n other languages, you specify what happens in response to an
event by providing a function

Event Event

. listener I stener
*What objects do we need? ' '
= Events <
= Event listeners

Java VM
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Brief Example Revisited

import javax.swing.*;
import java.awt.*;
import java.awt.event.¥*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton ("Push Me!");
private JLabel label = new JLabel ("Count: " + count);

public Intro() ({
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setLayout (new FlowLayout (FlowLayout.LEFT)); //set layout manager
add (myButton); //add components
add (label) ;
label.setPreferredSize (new Dimension (60, 10));

myButton.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {
count++;
label.setText ("Count: " + count);

} 4
b ; & =/ o/Es

pack() ;

setVisible (true) ;

}

public static void main(String[] args) ({
try {
UIManager . setLookAndFeel (UIManager.getSystemLookAndFeelClassName()) ;
} catch (Exception exc) ({}
new Intro();




Brief Example Revisited

private JButton myButton = new JButton ("Push Me!");

myButton.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {
count++;
label.setText ("Count: " + count);

}) =

m=%
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The Java Event Model

* Timeline
» User (or program) does something to a component
¢ clicks on a button, resizes a window, ...
= Java issues an event object describing the event

= A special type of object (a listener) “hears” the event
+ The listener has a method that “handles” the event
+ The handler does whatever the programmer programmed

e \What you need to understand
= Events: How components issue events
= Listeners: How to make an object that listens for events
= Handlers: How to write a method that responds to an event
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Events

* An Event is a Java object

= |t represents an action that has
occurred — mouse clicked,
button pushed, menu item
selected, key pressed, ...

» Events are normally created by
the Java runtime system

+ You can create your own
events, but this is unusual

* Most events are in
java.awt.event

= Some events are in
javax.swing.event

e All events are subclasses of
AWTEvent

AWTEvent
ActionEvent

ComponentEvent
InputEvent
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Types of Events

e Each Swing Component can generate one or more
types of events

* The type of event depends on the component
¢ Clicking a JButton creates an ActionEvent
¢+ Clicking a JCheckbox creates an ItemEvent

= The different kinds of events include different information about
what has occurred
+ All events have method getSource () which returns the object
(e.qg., the button or checkbox) on which the Event initially occurred

* An ItemEvent has a method getStateChange () that returns an

integer indicating whether the item (e.g., the checkbox) was
selected or deselected

31



Event Listeners

eActionlListener, Mouselistener,
WindowListener, ...

e Listeners are Java interfaces
= Any class that implements that interface can be used as a listener

* To be a listener, a class must implement the interface

» Example: an ActionListener must contain a method
public void actionPerformed (ActionEvent e)

32



Implementing Listeners

* \Which class should be a listener?

= Java has no restrictions on this, so any class that implements
the listener will work

e Typical choices

= Top-level container that contains whole GUI
public class GUI implements Actionlistener

* Inner classes to create specific listeners for reuse
private class LabelMaker implements ActionListener

= Anonymous classes created on the spot
b.addActionListener (new ActionlListener() {...}):

33



Listeners and Listener Methods

 When you implement an interface, you must implement all the
interface’s methods
= |nterface ActionListener has one method:

void actionPerformed (ActionEvent e)
» Interface MouseInputListener has seven methods:

void mouseClicked (MouseEvent e)
void mouseEntered (MouseEvent e)
void mouseExited (MouseEvent e)
void mousePressed (MouseEvent e)
void mouseReleased (MouseEvent e)
void mouseDragged (MouseEvent e)
void mouseMoved (MouseEvent e)
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Registering Listeners

 How does a component know which listener to use?

* You must register the listeners

= This connects listener objects with their source objects
= Syntax: component.addTypelistener (Listener)

* You can register as many listeners as you like

 Example:

b.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
count++;
label.setText (generatelLabel()) ;

});
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Example 1: The Frame Is the Listener

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExamplel extends JFrame implements ActionListener ({
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel ("Count: " + count);
public static void main(String[] args) {
JFrame f = new ListenerExamplel () ;
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200,100) ;
f.setVisible (true) ;
}
public ListenerExamplel () ({
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
add (b) ; add(label) ;
b.addActionListener (this) ;
}
public void actionPerformed (ActionEvent e) ({
count++;
label.setText ("Count: " + count);
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Example 2: The Listener is an Inner Class

import Jjavax.swing.*; import java.awt.*; import Jjava.awt.event.*;
public class ListenerExample2 extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel ("Count: " + count);
class Helper implements ActionListener {
public void actionPerformed (ActionEvent e) ({
count++;
label.setText ("Count: " + count);

}

public static void main (String[] args) {
JFrame f = new ListenerExample2() ;
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200,100); f.setVisible(true);

}

public ListenerExample2 () ({
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
add (b) ; add(label); b.addActionListener (new Helper()) ;
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Example 3: The Listener is an Anonymous Class

import javax.swing.*; import java.awt.*; import java.awt.event.¥*;
public class ListenerExample3 extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel ("Count: " + count);
public static void main (String[] args) {
JFrame f = new ListenerExample3();
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200,100); f.setVisible(true);
}
public ListenerExample3 () ({
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
add (b) ; add(label) ;
b.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) ({
count++;
label.setText ("Count: " + count);

})
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Adapters

e Some listeners (e.g., MouseInputListener) have
lots of methods; you don’t always need all of them
» For instance, you may be interested only in mouse clicks

 For this situation, Java provides adapters

= An adapter is a predefined class that implements all the
methods of the corresponding Listener

¢+ Example: MouseInputAdapter is a class that implements all
the methods of interface MouseInputListener

» The adapter methods do nothing

» To easlily create your own listener, you extend the adapter
class, overriding just the methods that you actually need
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Using Adapters

import javax.swing.*; import javax.swing.event.*;
import java.awt.*; import java.awt.event.*;
public class AdapterExample extends JFrame ({

private int count; private JButton b = new JButton ("Mouse Me!") ;

private JLabel label = new JLabel ("Count: " + count);

class Helper extends MouseInputAdapter ({

public void mouseEntered (MouseEvent e) {
count++;

label.setText ("Count: " + count);

}

public static void main(String[] args) {
JFrame f = new AdapterExample() ;
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200,100); f.setVisible(true)

}

public AdapterExample() {
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
add (b) ; add(label); b.addMouselistener (new Helper()) ;
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Notes on Events and Listeners

e A single component can have many listeners

e Multiple components can share the same listener

= Can use event.getSource () to identify the component
that generated the event

* For more information on designing listeners, see
http://java.sun.com/docs/books/tutorial/
uiswing/events/generalrules.html

e For more information on designing GUIs, see
http://java.sun.com/docs/books/tutorial/
uiswing/
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GUI Drawing and Painting

For a drawing area, extend JPanel and override the method
public void paintComponent (Graphics g)

paintComponent contains the code to completely draw
everything in your drawing panel

Do not call paintComponent directly — instead, request that the

system redraw the panel at the next convenient opportunity by
calling myPanel.repaint ()

repaint () requests a call paintComponent () “soon”
" repaint (ms) requests a call within ms milliseconds

+ Avoids unnecessary repainting
¢ 16ms is a good default value
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Java Graphics

 The Graphics class has methods for colors, fonts, and various
shapes and lines
= setColor (Color c)
drawOval (int x, int y, int width, int height)
£fillOval (int x, int y, int width, int height)
drawline (int x1, int yl, int x2, int y2)

drawString (String str, int x, int y)

e Take a look at
" java.awt.Graphics (for basic graphics)
" java.awt.Graphics2D (for more sophisticated control)

= The 2D Graphics Trail:
http://java.sun.com/docs/books/tutorial/2d/index.html
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