Introduction

to GUIs
(Graphical User
Interfaces)

Lecture 21
CS2110
Summer 2009

Interactive Programs

iInput
e “Classic” view of computer

programs: transform inputs to
outputs, stop

output

e Event-driven programs: @ @
mteractlve_, Iong-rurmm_g ot output
= Servers interact with clients events events

= Applications interact with
user(s)

{ program

GUI Motivation

* Interacting with a program

» Program-Driven
+ Statements execute in sequential, predetermined order
+ Use keyboard or file 1/0, but program determines when that happens
¢ Usually single-threaded

= Event-Driven
* Program waits for user input to activate certain statements
+ Typically uses a GUI (Graphical User Interface)
+ Often multi-threaded

e Design...Which to pick?
» Program called by another program?
* Program used at command line?
» Program interacts often with user?
» Program used in window environment?

e How does Java do GUIs?

Java Support for Building GUIs

e Java Foundation Classes e Our main focus: Swing
= Classes for building GUIs = Building blocks of GUIs
= Major components + Windows & components
+ awt and swing + User interactions
+ Pluggable look-and-feel support = Built upon the AWT (Abstract
+ Accessibility AP Window Toolkit)
¢ Java 2D API + Java event model

+ Drag-and-drop Support
+ [nternationalization

» Java's support for cross-platform GUIs is one of its main selling
points

Java Foundation Classes

e Pluggable Look-and-Feel Support
= Controls look-and-feel for particular windowing environment
= E.g., Java, Windows, Motif, Mac
* Accessibility API
= Supports assistive technologies such as screen readers and Braille
e Java 2D
= Drawing
= Includes rectangles, lines, circles, images, ...
e Drag-and-drop

= Support for drag and drop between Java application and a native
application

* Internationalization
= Support for other languages

GUI Statics and GUI Dynamics

e Statics: what’s drawn on the screen

= Components
* buttons, labels, lists, sliders, menus, ...

= Containers: components that contain other components
+ frames, panels, dialog boxes, ...

= Layout managers: control placement and sizing of components

e Dynamics: user interactions

= Events
* button-press, mouse-click, key-press, ...
= Listeners: an object that responds to an event

= Helper classes
¢ Graphics, Color, Font, FontMetrics, Dimension, ...

Creating a Window

import javax.swing.*;

public class Basicl {

public static void main (String[] args) {
//create the window
JFrame f = new JFrame ("Basic Test!");
//quit Java after closing the window
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200, 200); //set size in pixels
f.setVisible(true); //show the window

’%} Basic Test! E]@W

Creating a Window Using a Constructor

import javax.swing.¥*;
public class Basic2 extends JFrame {

public static void main (String[] args) {
new Basic2() ;

}

public Basic2 () {
setTitle ("Basic Test2!"); //set the title
//quit Java after closing the window
setDefaultCloseOperation (JFrame. EXIT ON CLOSE) ;
setSize (200, 200); //set size in pixels
setVisible (true); //show the window

A More Extensive Example

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton ("Push Me!");
private JLabel label = new JLabel ("Count: " + count);

public Intro() ({
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setLayout (new FlowLayout (FlowLayout.LEFT)); //set layout manager
add (myButton); //add components
add (label) ;
label.setPreferredSize (new Dimension (60, 10));

myButton.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {

count++;
label.setText ("Count: " + count);

}
}) = M=%
Zounk: 1

pack() ;
setVisible (true) ;

}

public static void main(String[] args) ({

try {
UIManager . setLookAndFeel (UIManager.getSystemLookAndFeelClassName()) ;

} catch (Exception exc) ({}
new Intro();

GUI Statics

e Determine which components you want

e Choose a top-level container in which to put the
components (JFrame IS often a good choice)

* Choose a layout manager to determine how
components are arranged

e Place the components

10

Components = What You See

 Visual part of an interface

e Represents something with position and size

e Can be painted on screen and can receive events
e Buttons, labels, lists, sliders, menus, ...

11

Component Examples

import javax.swing.*;
import java.awt.*;

public class ComponentExamples extends JFrame ({

public ComponentExamples () {
setLayout (new FlowLayout (FlowLayout.LEFT)) ;

add (new
add (new
add (new
add (new
add (new
add (new

setDefau
pack() ;
setVisib

}

public stat
try {
UIMan

} catch
new Comp

JButton ("Button")) ;

JLabel ("Label")) ;

JComboBox (new String[] { "A", "B",
JCheckBox ("JCheckBox")) ;
JSlider (0, 100));
JColorChooser()) ;

HC"

}))

&

=X

Label .ﬁ._v: [ICheckBax J

§wa

es ! HoE | RGE

Recent:

Presvigw

-

D Sarmple Text Sample Text

More Components

e JFileChooser: allows choosing a file
e JLabel: a simple text label

e JTextArea: editable text

e JTextField: editable text (one line)

e JScrollBar: a scrollbar

e JPopupMenu: a POp-up menu

e JProgressBar: a progress bar

e Lots more!

13

Contalners

e A container is a component that
= Can hold other components
» Has a layout manager

* Heavyweight vs. lightweight

= A heavyweight component interacts directly with the host system
» JWindow, JFrame, and JDialog are heavyweight

= Except for these top-level containers, Swing components are mostly lightweight

e There are three basic top-level containers
» JWindow: top-level window with no border
» JFrame: top-level window with border and (optional) menu bar
» JDialog: used for dialog windows

* An important lightweight container
» JPanel: used mostly to organize objects within other containers

14

A Component Tree

JFrame
|] Converter
‘J Panel ~Metric System
/ \ |3'EEE Kilometers -
JPanel JPa.neI — I
JPanel JPanel
JPanel JPanel JPanel JPanel

JComboBox (mi
ComboBox (km) (mi)

JTextField (3226) JTextField (2000)
JSlider JSlider
15

Layout Managers

* A layout manager controls placement and sizing of components in a container

= If you do not specify a layout manager, the container will use a default:
¢ JPanel default = FlowLayout
¢ JFrame default = BorderLayout

* Five common layout managers:
= BorderLayout, BoxLayout, FlowLayout, GridBagLayout, GridLayout

* General syntax: container.setlLayout (new LayoutMan()) ;

e Examples:
JPanel pl

new JPanel (new BorderLayout()) ;

JPanel p2 = new JPanel() ;
p2.setLayout (new BorderLayout()) ;

16

Some Example Layout Managers

* FlowLayout

= Components placed from left to right in order added
= When a row is filled, a new row is started
= Lines can be centered, left-justified or right-justified (see FlowLayout constructor)

* GridLayout

= Components are placed in grid pattern (number of rows & columns specified in
constructor)

= Grid is filled left-to-right, then top-to-bottom

* BorderLayout
= Divides window into five areas: North, South, East, West, Center

e Adding components
* FlowLayout and GridLayout USE container.add (component)

* BorderLayout USES container.add (component, index) Where index is one of

¢ BorderLayout.North, BorderLayout.South, BorderLayout.East

"7
BorderLayout.West, BorderLayout.Center

FlowLayout Example

import javax.swing.*;
import java.awt.*;

public class Staticsl {

public static void main(§gﬁmmﬂ

BEX]

new S1GUI () ;

Button 1

}

Button 2

Button 3

Button 4

Button 5

} Button 6

Button 7

Button 8

class S1GUI {
private JFrame f£f;

public S1GUI () {

f = new JFrame("Staticsl") ;

f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

f.setSize (500, 200) ;

f.setLayout (new FlowLayout (FlowLayout.LEFT)) ;

for (int b = 1; b < 9; b++)

f.add (new JButton("Button " + b)),

f.setVisible (true) ;

18

BorderLayout Example

import javax.swing.*;
import java.awt.*;

public class Statics2 {
public static void main (String[] args) { new

}

class ColoredJPanel extends JPanel {
Color color;
ColoredJPanel (Color color) {
this.color = color;

}

public void paintComponent (Graphics g) {
g.setColor(color) ;
g.fillRect (0, O, 400, 400);

}

class S2GUI extends JFrame {
public S2GUI() {
setTitle("Statics2");
setDefaultCloseOperation (JFrame.EXIT ON CIL
setSize (400, 400) ;

add (new
add (new
add (new
add (new
add (new

< Statics2

=/ 2/ES

ColoredJPanel (Color.RED) , BorderLayout.NORTH) ;
ColoredJPanel (Color.GREEN) , BorderLayout.SOUTH) ;
ColoredJPanel (Color.BLUE) , BorderLayout. WEST) ;
ColoredJPanel (Color. YELLOW) , BorderLayout.EAST) ;
ColoredJPanel (Color.BLACK) , BorderLayout.CENTER) ;

setVisible (true) ;

19

GridLayout Example

. . . iy =
import javax.swing.*; £ Statics3
import java.awt.*;

public class Statics3 {
public static void main(String[] args) { new S3GUI(); }
}

class S3GUI extends JFrame {
static final int DIM = 25;
static final int SIZE = 12;
static final int GAP = 1;

public S3GUI() {
setTitle ("Statics3") ;
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setLayout (new GridLayout (DIM, DIM, GAP, GAP)) ;

for (int i = 0; i < DIM * DIM; i++) add(new MyPanel());
pack() ;
setVisible (true) ;

}

class MyPanel extends JPanel ({
MyPanel () { setPreferredSize(new Dimension(SIZE, SIZE)); }
public void paintComponent (Graphics g) {
float gradient =

1f - ((float)Math.abs(getX() - get¥Y()))/(float) ((SIZE + GAP) * DIM);

g.setColor (new Color (0f, 0f, gradient));
g.fillRect (0, 0, getWidth (), getHeight())

20

More Layout Managers

CardLayout
= Tabbed index card look from Windows

GridBagLayout
= Most versatile, but complicated

Custom
= Can define your own layout manager
= But best to try Java's layout managers first...

Null
= No layout manager
* Programmer must specify absolute locations

* Provides great control, but can be dangerous because of platform
dependency

21

AW

e AWT
= |nitial GUI toolkit for Java

- and Swing

e Swing
= More recent (since Java 1.2)

= Provided a “Java” look and feel GUI toolkit

» Basic API: java.awt. *

» Added functionality (new
components)

= Supports look and feel for
various platforms (Windows,
Motif, Mac)

= Basic API: javax.swing.*

* Did Swing replaced AWT?

» Not quite: both use the AWT
event model

22

Code Examples

* Intro.java

= Button & counter
e Basicl.java

= Create a window
e Basic2.java

= Create a window using a
constructor

e Calculator.java

= Shows use of JOptionPane
to produce standard dialogs

e ComponentExamples.java
= Sample components

e Staticsl.java
* FlowLayout example

e Statics2.java
* BorderLayout example

e Statics3.java
* GridLayout example

e LayoutDemo.java
= Multiple layouts

23

%)
O
=
©
-
>
O
D
O

GUI Statics and GUI Dynamics

e Statics: what’s drawn on the screen

= Components
* buttons, labels, lists, sliders, menus, ...

= Containers: components that contain other components
+ frames, panels, dialog boxes, ...

= Layout managers: control placement and sizing of components

e Dynamics: user interactions

= Events
* button-press, mouse-click, key-press, ...
= Listeners: an object that responds to an event

= Helper classes
¢ Graphics, Color, Font, FontMetrics, Dimension, ...

25

Dynamics Overview

e Dynamics = causing and responding to actions
= \What actions? events
* Need to write code that knows what to do when an event occurs

» [n Java, you specify what happens by providing an object that
“hears” the event

+ |n other languages, you specify what happens in response to an
event by providing a function

Event Event

. listener I stener
*What objects do we need? ' '
= Events <
= Event listeners

Java VM

26

Brief Example Revisited

import javax.swing.*;
import java.awt.*;
import java.awt.event.¥*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton ("Push Me!");
private JLabel label = new JLabel ("Count: " + count);

public Intro() ({
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setLayout (new FlowLayout (FlowLayout.LEFT)); //set layout manager
add (myButton); //add components
add (label) ;
label.setPreferredSize (new Dimension (60, 10));

myButton.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {
count++;
label.setText ("Count: " + count);

} 4
b ; & =/ o/Es

pack() ;

setVisible (true) ;

}

public static void main(String[] args) ({
try {
UIManager . setLookAndFeel (UIManager.getSystemLookAndFeelClassName()) ;
} catch (Exception exc) ({}
new Intro();

Brief Example Revisited

private JButton myButton = new JButton ("Push Me!");

myButton.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {
count++;
label.setText ("Count: " + count);

}) =

m=%

28

The Java Event Model

* Timeline
» User (or program) does something to a component
¢ clicks on a button, resizes a window, ...
= Java issues an event object describing the event

= A special type of object (a listener) “hears” the event
+ The listener has a method that “handles” the event
+ The handler does whatever the programmer programmed

e \What you need to understand
= Events: How components issue events
= Listeners: How to make an object that listens for events
= Handlers: How to write a method that responds to an event

29

Events

* An Event is a Java object

= |t represents an action that has
occurred — mouse clicked,
button pushed, menu item
selected, key pressed, ...

» Events are normally created by
the Java runtime system

+ You can create your own
events, but this is unusual

* Most events are in
java.awt.event

= Some events are in
javax.swing.event

e All events are subclasses of
AWTEvent

AWTEvent
ActionEvent

ComponentEvent
InputEvent

30

Types of Events

e Each Swing Component can generate one or more
types of events

* The type of event depends on the component
¢ Clicking a JButton creates an ActionEvent
¢+ Clicking a JCheckbox creates an ItemEvent

= The different kinds of events include different information about
what has occurred
+ All events have method getSource () which returns the object
(e.qg., the button or checkbox) on which the Event initially occurred

* An ItemEvent has a method getStateChange () that returns an

integer indicating whether the item (e.g., the checkbox) was
selected or deselected

31

Event Listeners

eActionlListener, Mouselistener,
WindowListener, ...

e Listeners are Java interfaces
= Any class that implements that interface can be used as a listener

* To be a listener, a class must implement the interface

» Example: an ActionListener must contain a method
public void actionPerformed (ActionEvent e)

32

Implementing Listeners

* \Which class should be a listener?

= Java has no restrictions on this, so any class that implements
the listener will work

e Typical choices

= Top-level container that contains whole GUI
public class GUI implements Actionlistener

* Inner classes to create specific listeners for reuse
private class LabelMaker implements ActionListener

= Anonymous classes created on the spot
b.addActionListener (new ActionlListener() {...}):

33

Listeners and Listener Methods

 When you implement an interface, you must implement all the
interface’s methods
= |nterface ActionListener has one method:

void actionPerformed (ActionEvent e)
» Interface MouseInputListener has seven methods:

void mouseClicked (MouseEvent e)
void mouseEntered (MouseEvent e)
void mouseExited (MouseEvent e)
void mousePressed (MouseEvent e)
void mouseReleased (MouseEvent e)
void mouseDragged (MouseEvent e)
void mouseMoved (MouseEvent e)

34

Registering Listeners

 How does a component know which listener to use?

* You must register the listeners

= This connects listener objects with their source objects
= Syntax: component.addTypelistener (Listener)

* You can register as many listeners as you like

 Example:

b.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
count++;
label.setText (generatelLabel()) ;

});

35

Example 1: The Frame Is the Listener

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExamplel extends JFrame implements ActionListener ({
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel ("Count: " + count);
public static void main(String[] args) {
JFrame f = new ListenerExamplel () ;
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200,100) ;
f.setVisible (true) ;
}
public ListenerExamplel () ({
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
add (b) ; add(label) ;
b.addActionListener (this) ;
}
public void actionPerformed (ActionEvent e) ({
count++;
label.setText ("Count: " + count);

36

Example 2: The Listener is an Inner Class

import Jjavax.swing.*; import java.awt.*; import Jjava.awt.event.*;
public class ListenerExample2 extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel ("Count: " + count);
class Helper implements ActionListener {
public void actionPerformed (ActionEvent e) ({
count++;
label.setText ("Count: " + count);

}

public static void main (String[] args) {
JFrame f = new ListenerExample2() ;
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200,100); f.setVisible(true);

}

public ListenerExample2 () ({
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
add (b) ; add(label); b.addActionListener (new Helper()) ;

37

Example 3: The Listener is an Anonymous Class

import javax.swing.*; import java.awt.*; import java.awt.event.¥*;
public class ListenerExample3 extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel ("Count: " + count);
public static void main (String[] args) {
JFrame f = new ListenerExample3();
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200,100); f.setVisible(true);
}
public ListenerExample3 () ({
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
add (b) ; add(label) ;
b.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) ({
count++;
label.setText ("Count: " + count);

})

38

Adapters

e Some listeners (e.g., MouseInputListener) have
lots of methods; you don’t always need all of them
» For instance, you may be interested only in mouse clicks

 For this situation, Java provides adapters

= An adapter is a predefined class that implements all the
methods of the corresponding Listener

¢+ Example: MouseInputAdapter is a class that implements all
the methods of interface MouseInputListener

» The adapter methods do nothing

» To easlily create your own listener, you extend the adapter
class, overriding just the methods that you actually need

39

Using Adapters

import javax.swing.*; import javax.swing.event.*;
import java.awt.*; import java.awt.event.*;
public class AdapterExample extends JFrame ({

private int count; private JButton b = new JButton ("Mouse Me!") ;

private JLabel label = new JLabel ("Count: " + count);

class Helper extends MouseInputAdapter ({

public void mouseEntered (MouseEvent e) {
count++;

label.setText ("Count: " + count);

}

public static void main(String[] args) {
JFrame f = new AdapterExample() ;
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (200,100); f.setVisible(true)

}

public AdapterExample() {
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
add (b) ; add(label); b.addMouselistener (new Helper()) ;

40

Notes on Events and Listeners

e A single component can have many listeners

e Multiple components can share the same listener

= Can use event.getSource () to identify the component
that generated the event

* For more information on designing listeners, see
http://java.sun.com/docs/books/tutorial/
uiswing/events/generalrules.html

e For more information on designing GUIs, see
http://java.sun.com/docs/books/tutorial/
uiswing/

41

GUI Drawing and Painting

For a drawing area, extend JPanel and override the method
public void paintComponent (Graphics g)

paintComponent contains the code to completely draw
everything in your drawing panel

Do not call paintComponent directly — instead, request that the

system redraw the panel at the next convenient opportunity by
calling myPanel.repaint ()

repaint () requests a call paintComponent () “soon”
" repaint (ms) requests a call within ms milliseconds

+ Avoids unnecessary repainting
¢ 16ms is a good default value

42

Java Graphics

 The Graphics class has methods for colors, fonts, and various
shapes and lines
= setColor (Color c)
drawOval (int x, int y, int width, int height)
£fillOval (int x, int y, int width, int height)
drawline (int x1, int yl, int x2, int y2)

drawString (String str, int x, int y)

e Take a look at
" java.awt.Graphics (for basic graphics)
" java.awt.Graphics2D (for more sophisticated control)

= The 2D Graphics Trail:
http://java.sun.com/docs/books/tutorial/2d/index.html

43

