
1

 Comparisons and
the Comparable

Interface

Lecture 14
CS211 – Spring 2006

Comparison

• Something that we do a lot

• Can compare all kinds of data with respect to all
kinds of comparison relations
 Identity
 Equality
 Order
 Lots of others

Identity vs. Equality
• For primitive types (e.g., int, long, float, double, boolean)

 == and != are equality tests
• For reference types (i.e., objects)

 == and != are identity tests
 In other words, they test if the references indicate the same address

in the Heap
• For equality of objects: use the equals() method

 equals() is defined in class Object
 Any class you create inherits equals from its parent class, but you

can override it (and probably want to)

Identity vs. Equality for Strings

• Quiz: What are the results of the following tests?
 "hello".equals("hello")
 "hello" == "hello"
 "hello" == new String("hello")

true

true
false

Notions of equality
• A is equal to B if A can be substituted for B anywhere

 Identical things must be equal: == implies equals
• Immutable values are equal if they represent same value!

 (new Integer(2)).equals(new Integer(2))
 == is not an abstract operation

• Mutable values can be distinguished by assignment.
class Foo { int f; Foo(int g) { f = g; } }
Foo x = new Foo(2);
Foo y = new Foo(2);
 x.equals(y)? Not really (x.f = 1), but Java fudges equality

• Shallow equality: x equals y if all components are ==
• Deep equality: x equals y if all components are (deep) equal

Order
• For numeric primitives

(e.g., int, float, long,
double)
 Use <, >, <=, >=

• For reference types that
correspond to primitive
types
 As of Java 5.0, Java does

Autoboxing and Auto-
Unboxing of Primitive
Types

 This means, for example,
that an Integer is
automatically converted into
an appropriate int whenever
necessary (and vice versa)

• For all other reference
types
 <, >, <=, >= do not work

• Not clear you want them
to work: suppose we
compare People

 Compare by name?
 Compare by height?

weight?
 Compare by SSN?

CUID?
 Java provides Comparable

interface
• Or can use a Comparator

2

Comparable Interface

• (Note: this is Java 1.4.2 – Java 5.0 has generics)
• x.compareTo(y) returns a negative, zero, or positive integer based on

whether x is less-than, equal-to, or greater-than y, respectively
• less-than, equal-to, and greater-than are defined for that class by the

implementation of compareTo

interface Comparable {
 int compareTo(Object x);
}

Example
• To compare people by weight:

class Person implements Comparable {
 private int weight;
 ...
 public int compareTo(Object obj) {
 return ((Person)obj).weight - weight;
 }
 public boolean equals(Object obj) {
 return obj instanceof Person &&
 ((Person)obj).weight == weight;
 }
}

Consistency
If a class has an equals method and also
implements Comparable, then it is advisable (but
not enforced) that

a.equals(b)
exactly when

a.compareTo(b) == 0

Odd behavior can result if this is violated

Generic Code
• The Comparable interface allows generic code for

sorting, searching, and other operations that only require
comparisons

• The sort methods do not need to know what they are sorting,
only how to compare elements

static void mergeSort(Comparable[] a) {...}
static void bubbleSort(Comparable[] a) {...}

Generic Code Example
• Finding the max element of an array

• What is the max element? Whatever compareTo
says it is!

//return max element of an array
static Comparable max(Comparable[] a) {
 //throws ArrayIndexOutOfBoundsException
 Comparable max = a[0];
 for (Comparable x : a) {
 if (x.compareTo(max) > 0) max = x;
 }
 return max;
}

Another Example
• Lexicographic comparison of Comparable arrays
• for int arrays, a < b lexicographically iff either:

 a[i] == b[i] for i < j and a[j] < b[j]; or
 a[i] == b[i] for all i < a.length, and b is longer

//compare two Comparable arrays lexicographically
static int arrayCompare(Comparable[] a, Comparable[] b)
{
 for (int i = 0; i < a.length && i < b.length; i++) {
 int x = a[i].compareTo(b[i]);
 if (x != 0) return x;
 }
 return b.length - a.length;
}

3

Comparable Interface Update
• Java 5.0 allows the use of “Generic Types”

 Aka parameterized types
 Here’s the Java 5.0 Comparable interface

 compareTo is only defined for arguments of type T
• Attempts to use a different type are caught at compile time

interface Comparable<T> {
 int compareTo(T x);
}

Example
• In the Java source code, class String looks sort of

(other interfaces are also implemented) like this:

• Code such as
“hello”.compareTo(new Integer(3))
generates a compile-time error
 This implies that the runtime code can be more efficient

public final class String
 implements Comparable<String>{
 public int compareTo (String s) {...}
...}

Using Comparable for Sorting
• Sorting of arrays provided by Java Collections Framework:

• This works for arrays of type comparableType[] (the base
type must implement the Comparable interface)

• (Class java.util.Arrays also contains sort methods for arrays
of type primType[] for each primitive type)

import java.util.Arrays;
...
String[] names;
...
Arrays.sort(names)

Unnatural Sorting
• The ordering given by

compareTo is considered to
be the natural ordering for
a class

• Sometimes you need to sort
based on a different
ordering
 Example: we may normally

sort students by CUID, but
we might want to produce a
list alphabetized by name

• Can use a Comparator (a class
that implements the
Comparator interface)

Arrays.sort(students, comparator)

• String, for example, has a
predefined Comparator:

String.CASE_INSENSITIVE_ORDER

interface Comparator<T> {
 int compare (T x, T y);
}

Efficient Programs
• Have been talking a lot about how to make writing

programs efficient
 Interfaces, encapsulation, inheritance, type checking,

recursion vs. iteration, …
• Haven’t talked much about how to make the

programs themselves run efficiently
 How long does it take program to run?
 Is there an efficient data structure that should be used?
 Is there a faster algorithm?

Linear Search
• Input:

 Unsorted array A of Comparables
 Value v of type Comparable

• Output:
 True if v is in array A, false otherwise

• Algorithm: examine the elements of A in some order until
you either
 Find v: return true, or
 You have unsuccessfully examined all the elements of the array:

return false

4

7 4 6 19 3 7 8 10 32 54 67 98Linear search:

Code for Linear Search
 // Linear search on possibly unsorted array
 public static boolean linearSearch(Comparable[] a, Object v) {
 for (int i = 0; i < a.length; i++)
 if (a[i].compareTo(v) == 0) return true;
 return false;
 }

Binary Search
• Input:

 Sorted array A[0..n-1] of Comparable
 Value v of type Comparable

• Output:
 True if v is in array A, false otherwise

• Algorithm: similar to looking up telephone directory
 Let m be the middle element of the array
 If (m == v) return true
 If (m < v) search right half of array
 If (m > v) search left half of array

-2 0 6 8 9 1113 22 34 45 56 78

1 2 3Search for 94

12
Search for 6

4

 // Lo and hi are the two end points of interval of array
 public static boolean binarySearch(Comparable[] a, int lo, int hi, Object v) {

 int middle = (lo + hi)/2;
 int c = A[middle].compareTo(v);

 // Base cases
 if (c == 0) return true;
 // Check if array interval has only one element
 if (lo == hi) return false;

 // Array interval has more than one element, so continue searching
 if (c > 0) return binarySearch(a, lo, middle -1, v); // Left half
 else return binarySearch(a, middle+1, hi, v); // Right half

}

Invocation: assume array named data contains values

….. binarySearch(data, 0, data.length -1, v)…..

Comparing Algorithms
• If you run binary search and linear search on a

computer, you will find that binary search runs
much faster than linear search

• Stating this precisely can be quite subtle
• One approach: asymptotic complexity of programs

 Big-O analysis
• Two steps:

 Compute running time of program
 Running time ⇒ asymptotic running time

Running Time of an Algorithm
• In general, running time of a program such as

linear search depends on many factors
 Machine on which program is executed

• Laptop vs. supercomputer

 Size of input (array A)
• Big array vs. small array

 Values in array and value we search for
• v is first element examined in array vs. v is not in array

• To talk precisely about running times of programs,
we must specify all three factors above

Defining an Algorithm’s Running Time
1. Machine on which algorithm (i.e., program) is executed

 Random-access Memory (RAM) model of computing
• Measure of running time: number of operations executed

 Other models used in CS: Turing machine, Parallel RAM model,
…

 Simplified RAM model for now:
• Each data comparison is one operation.
• All other operations are free.
• Evaluate searching/sorting algorithms by estimating number of

comparisons they execute
 It can be shown that, for comparison-based searching and sorting

algorithms, the total number of operations executed on RAM model is
proportional to number of data comparisons executed

5

Defining Running Time (cont’d)
2. Dependence on size of input

 Rather than compute a single number, we will
compute a function from problem size to number of
comparisons
• E.g., f(n) = 32n2 – 2n + 23 where n is problem size

 Each program has its own measure of problem size
 For searching/sorting, natural measure is size of array

on which you are searching/sorting

Defining Running Time (cont’d)
3. Dependence of running

time on input values
• Consider set In of all

possible inputs of size n
• Find number of

comparisons for each
possible input in this set

• Compute
 Average: usually hard to

compute
 Worst-case: easier to

compute

• We will use worst-case
complexity

([3,6], 2)

([3,6], 3)

([-4,5], -9)

…….

Possible inputs of size 2
for linear/binary search

7 4 6 19 3 7 8 10 32 54 67 98Linear search:

-2 0 6 8 9 1113 22 34 45 56 78

Binary search: sorted array of size n

Computing Running Times

Assume array is of size n.
Worst-case number of comparisons: v is not in array.
Number of comparisons = n.
Running time of linear search: TL(n) = n

Worst-case number of comparisons: v is not in array.

 TB(n) = log2(n) + 1

