
1

Design Patterns
&

Some Unresolved
Problems

Lecture 26
CS211 – Fall 2006

Announcements
Final Exam

Wednesday, Dec 13
7:00 - 9:30 pm
Uris Hall, Auditorium

Review Session
To be determined

Check your final exam
schedule!

For exam conflicts:
Notify Kelly Patwell
(patwell@cs.cornell.edu)
You must provide

Your entire exam schedule
Include the course
numbers

Definition of exam conflict:
Two exams at the same
time or
Three or more exams within
24 hours

Late-Breaking Announcements
Thinking about a Masters of
Engineering degree?

Come to the next ACSU
general meeting
Wednesday, November
29th at 4:45pm in Phillips
203
Professor Bailey, director
of the Computer Science
M. Eng. program, will
discuss CS M. Eng.
opportunities
As always, pizza will be
served!

Jealous of the glamorous
life of CS consultants?

We're recruiting next-
semester consultants for
CS100 and CS211
Interested students
should fill out an
application, available in 303
Upson Hall

Design Patterns

Design Patterns: A catalog of common interactions
between objects that programmers have frequently
found useful

Influential book:
Design Patterns: Elements of Reusable Software,
Gamma, Helm, Johnson and Vlissides (1995)

Design patterns are often divided into 3 groups:
Creational patterns

Used to create objects
Structural patterns

Composing groups of objects to build more complex
structures

Behavioral patterns
Communication & flow control

A Few Design Patterns in Java
Design patterns can be used
with any Object-Oriented
language

Chain of Responsibility
Pattern

A request is passed along a
“chain” of classes until one
of the classes can handle it
Java example: The
inheritance structure
itself; a method-call is
passed up the inheritance
chain until the first parent
class containing that
method is found

Adapter pattern
Provides an alternate
interface to a class
Java example:
MouseAdapter is a class
used in Java to simplify
the MouseListener
interface

Iterator Pattern
A standard interface for
moving through a collection
Java example: Iterator
interface in the JCF

Complexity of Bounded-Degree Euclidean MST?

The Euclidean MST
(Minimum Spanning Tree)
problem:

Given n points in the plane,
determine the MST
Can be solved in O(n log n)
time by first building the
Delaunay Triangulation

Bounded-degree version:
Given n points in the plane
determine the MST where
each vertex has degree ≤ k

Known to be NP-hard for
k=3 [Papadimitriou &
Vazirani 84]
O(n log n) algorithm for
k=5 (or greater)

Can show Euclidean
MST has degree ≤ 5

Unknown for k=4

2

Runtime for Euclidean MST in Rd?

Given n points in dimension
d, determine the MST

Is there an algorithm with
runtime close to the
Ω(n log n) lower bound?

Can solve in time
O(n log n) for d=2

For large d, it appears that
runtime approaches O(n2)

Best algorithms for general
graphs run in time linear in
m = number of edges

But for Euclidean distances
on points, the number of
edges is n(n-1)/2

O(n2) Time for X+Y Sorting?
How long does it take to a sort an

n-by-n table of numbers?

O(n2log n) because there are n2

numbers in the table

What if it’s an addition table?
Shouldn’t it be easier to sort
than an arbitrary set of n2

numbers?

There is a technique [Fredman
76] that uses just O(n2)
comparisons

But it uses O(n2log n) time
[Lambert 92] to decide which
comparisons to use

This problem is closely related
to the problem of sorting the
vertices of a line arrangement

n-by-n

+ 1 3 5 8
2 3 5 7 10
10 11 13 15 18
12 13 15 17 20
14 15 17 19 22

O(n log n) Time for ShellSort?

Is there a sequence of ShellSort step-sizes for
which ShellSort runs in time O(n log n)?

There is a sequence for which ShellSort runs in
time O(n log2n)

Pratt sequence: numbers of the form 2p3q arranged in
order

3SUM in Subquadratic Time?
Given a set of n integers,
are there three that sum to
zero?

O(n2) algorithms are easy
(e.g., use a hashtable)
Are there better
algorithms?

This problem is closely
related to many other
problems [Gajentaan &
Overmars 95]

Given n lines in the plane,
are there 3 lines that
intersect in a point?
Given n triangles in the
plane, does their union
have a hole?

Great-Circle Graph 3-Colorable?
Build a graph by drawing
great-circles on a sphere

Create a vertex for each
intersection
Assume no three great
circles intersect in a point

Is the resulting graph 3-
colorable?

All arrangements for up to
11 great circles have been
verified as 3-colorable

For general circles on the
sphere (or for circles on the
plane) the graph can require
4 colors

The Big Question: Is P=NP?
P represents problems that can
be solved in polynomial time

These problems are said to be
tractable
Problems that are not in P are
said to be intractable

NP represents problems that,
for a given solution, the
solution can be checked in
polynomial time

For ease of comparison,
problems are usually stated as
yes-or-no questions

Examples

Given a weighted graph G and
a bound k, does G have a
spanning tree of size ≤ k?

This is in P because we have
an algorithm for the MST
with runtime O(m + n log n)

Given graph G, does G have a
cycle that visits all vertices?

This is in NP because, given a
possible solution, we can
check in polynomial time that
it’s a cycle and that it visits
all vertices

3

Current Status: P vs. NP
It’s easy to show that
P ⊆ NP
Most researchers believe
that P ≠ NP

But at present, there is no
proof
We do have a large
collection of NP-complete
problems

If any NP-complete
problem has a polynomial
time algorithm then they
all do

Definition: A problem B is
NP-complete if, by making
use of an imaginary fast
subroutine for B, any
problem in NP could be
solved in polynomial time

[Cook 1971] showed a
particular problem to be
NP-complete
[Karp 1972] showed that
many useful problems are
NP-complete

NP-Complete Problems
Graph coloring: Given graph G
and bound k, is G k-colorable?

Planar 3-coloring: Given planar
graph G, is G 3-colorable?

Traveling Salesman: Given
weighted graph G and bound k,
is there a cycle of cost ≤ k that
visits each vertex exactly once

Hamiltonian Cycle: Give graph
G, is there a cycle that visits
each vertex exactly once?

What if you really need an
algorithm for an NP-complete
problem?

Some special cases can be
solved in polynomial time

If you’re lucky, you have such
a special case

Otherwise, once a problem is
shown to be NP-complete, the
best strategy is to start
looking for an approximation

For a while, a new proof
showing a problem NP-complete
was enough for a a paper

Nowadays, no one is interested
unless the result is somehow
unexpected

