Design Patterns
&
Some Unresolved
Problems

Lecture 26
€S211 - Fall 2006

Announcements

* Final Exam
= Wednesday, Dec 13
= 7:00 - 9:30 pm
= Uris Hall, Auditorium

* Review Session
= To be determined

* Check your final exam
schedule!

* For exam conflicts:
= Notify Kelly Patwell
(patwell@cs.cornell.edu)
= You must provide
* Your entire exam schedule
¢ Include the course
numbers

* Definition of exam conflict:
= Two exams at the same
time or

= Three or more exams within
24 hours

Late-Breaking Announcements

 Thinking about a Masters of

Engineering degree?

= Come fo the next ACSU

general meeting
Wednesday, November
29th at 4:45pm in Phillips
203
Professor Bailey, director
of the Computer Science
M. Eng. program, will
discuss CS M. Eng.
opportunities
As always, pizza will be
served!

* Jealous of the glamorous
life of CS consultants?
= We're recruiting next-
semester consultants for
€5100 and €S211
= Interested students
should fill out an
application, available in 303
Upson Hall

Design Patterns

* Design Patterns: A catalog of common interactions
between objects that programmers have frequently

found useful
= Influential book:

Design Patterns: Elements of Reusable Software,
Gamma, Helm, Johnson and Vlissides (1995)

* Design patterns are often divided into 3 groups:

* Creational patterns

+ Used tfo create objects

= Structural patterns

+ Composing groups of objects to build more complex

structures
= Behavioral patterns

+ Communication & flow control

A Few Design Patterns in Java

* Design patterns can be used
with any Object-Oriented
language

* Chain of Responsibility
Pattern

= A request is passed along a
“chain" of classes until one
of the classes can handle it
Java example: The
inheritance structure
itself; a method-call is
passed up the inheritance
chain until the first parent
class containing that
method is found

* Adapter pattern

= Provides an alternate
interface to a class

= Java example:
MouseAdapter is a class
used in Java to simplify
the MouselListener
interface

* Iterator Pattern
= A standard interface for
moving through a collection
= Java example: Iterator
interface in the JCF

Complexity of Bounded-Degree Euclidean MST?

¢ The Euclidean MST
(Minimum Spanning Tree)
problem:

= Given n points in the plane,

determine the MST

= Can be solved in O(n log n)
time by first building the
Delaunay Triangulation

* Bounded-degree version:
= Given n points in the plane
determine the MST where
each vertex has degree < k
+ Known to be NP-hard for
k=3 [Papadimitriou &
Vazirani 84]
¢ O(n log n) algorithm for
k=5 (or greater)

+ Unknown for k=4




Runtime for Euclidean MST in Rd?

* Given n points in dimension
d, determine the MST
= Is there an algorithm with
runtime close to the
Q(n log n) lower bound?

* Can solve in time
O(n log n) for d=2

* For large d, it appears that
runtime approaches O(n?)

* Best algorithms for general

graphs run in time linear in
m = humber of edges
= But for Euclidean distances
on points, the number of
edges is n(n-1)/2

O(n?) Time for X+Y Sorting?

How long does it take to a sort an + ‘ 1 3 5 8
n-by-n table of numbers?
4 23 5 7 10

10|11 13 15 18
12 113 15 17 20
14 115 17 19 22
* O(n?log ”? because there are >« There isa technique [Fredman
numbers in the table 76] that uses just O(n2)
comparisons
= But it uses O(n?log n) time

* What if it's an addition table?
= Shouldn't it be easier to sort [Lamberf 92] to decide which
than an arbitrary set of n2 comparisons to use
numbers? * This problem is closely related
to the problem of sorting the
vertices of a line arrangement

3SUM in Subquadratic Time?

O(n log n) Time for ShellSort?

* Is there a sequence of ShellSort step-sizes for
which ShellSort runs in time O(n log n)?

* There /s a sequence for which ShellSort runs in
time O(n log?n)
= Pratt sequence: numbers of the form 2r39 arranged in
order

* Given a set of n integers,
are there three that sum to
zero?

= O(n?) algorithms are easy
(e.g., use a hashtable)

= Are there better
algorithms?

* This problem is closely

related to many other
problems [Gajentaan &
Overmars 95]
= Given n lines in the plane,
are there 3 lines that
intersect in a point?
= Given n triangles in the
plane, does their union
have a hole?

Great-Circle Graph 3-Colorable?

* Build a graph by drawing * For general circles on the
great-circles on a sphere sphere (or for circles on the
= Create a vertex for each P'Clne) the gr‘uph can require
intersection 4 colors
= Assume no three great
circles intersect in a point
* Is the resulting graph 3-
colorable? "
T

* All arrangements for up to
11 great circles have been .
verified as 3-colorable

The Big Question: Is P=NP?

« P represents problems that can

be so/vedin polynomial time

= These problems are said o be

tractable

= Problems that are not in P are
said to be /intractable

NP represents problems that,
for a given solution, the
solution can be checked in
polynomial time

For ease of comparison,
problems are usually stated as
yes-or-no questions

» Examples

= Given a weighted graph 6 and
a bound k, does G have a
spanning tree of size < k?
+ This is in P because we have
an algorithm for the MST
with runtime O(m + n log n)

= Given graph 6, does G have a
cycle that visits all vertices?
+ This is in NP because, given a
possible solution, we can
check in polynomial time that
it's a cycle and that it visits
all vertices




Current Status: P vs. NP

« It's easy to show that
P < NP
* Most researchers believe
that P = NP
= But at present, there is no
proof
= We do have a large
collection of NP-complete
problems
+ If any NP-complete
problem has a polynomial
time algorithm then they
all do

* Definition: A problem B is
NP-complete if, by making
use of an imaginary fast
subroutine for B, any
problem in NP could be
solved in polynomial time

= [Cook 1971] showed a
particular problem to be
NP-complete

= [Karp 1972] showed that
many useful problems are
NP-complete

NP-Complete Problems

Graph coloring: Given graph 6
and bound k, is & k-colorable?

Planar 3-coloring: Given planar
graph G, is G 3-colorable?

Traveling Salesman: Given
weighted graph G and bound k,
is there a cycle of cost < k that
visits each vertex exactly once

Hamiltonian Cycle: Give graph
G, is there a cycle that visits
each vertex exactly once?

* What if you really needan

algorithm for an NP-complete
problem?
= Some special cases can be
solved in polynomial time
+ If you're lucky, you have such
a special case
= Otherwise, once a problem is
shown to be NP-complete, the
best strategy is to start
looking for an approximation

* For a while, a new proof

showing a problem NP-complete
was enough for a a paper
= Nowadays, no one is interested
unless the result is somehow
unexpected




