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Design Patterns 
&

Some Unresolved 
Problems

Lecture 26
CS211 – Fall 2006

Announcements
Final Exam

Wednesday, Dec  13
7:00 - 9:30 pm
Uris Hall, Auditorium

Review Session
To be determined

Check your final exam 
schedule!

For exam conflicts:
Notify Kelly Patwell
(patwell@cs.cornell.edu)
You must provide

Your entire exam schedule
Include the course 
numbers

Definition of exam conflict:
Two exams at the same 
time or
Three or more exams within 
24 hours

Late-Breaking Announcements
Thinking about a Masters of 
Engineering degree? 

Come to the next ACSU 
general meeting
Wednesday, November 
29th at 4:45pm in Phillips 
203
Professor Bailey, director 
of the Computer Science 
M. Eng. program, will 
discuss CS M. Eng. 
opportunities
As always, pizza will be 
served!

Jealous of the glamorous 
life of CS consultants?

We're recruiting next-
semester consultants for 
CS100 and CS211
Interested students 
should fill out an 
application, available in 303 
Upson Hall

Design Patterns

Design Patterns: A catalog of common interactions 
between objects that programmers have frequently 
found useful

Influential book:
Design Patterns: Elements of Reusable Software, 
Gamma, Helm, Johnson and Vlissides (1995)

Design patterns are often divided into 3 groups:
Creational patterns

Used to create objects
Structural patterns

Composing groups of objects to build more complex 
structures

Behavioral patterns
Communication & flow control

A Few Design Patterns in Java
Design patterns can be used 
with any Object-Oriented 
language

Chain of Responsibility 
Pattern

A request is passed along a 
“chain” of classes until one 
of the classes can handle it
Java example: The 
inheritance structure 
itself; a method-call is 
passed up the inheritance 
chain until the first parent 
class containing that 
method is found

Adapter pattern
Provides an alternate 
interface to a class
Java example:
MouseAdapter is a class 
used in Java to simplify 
the MouseListener
interface

Iterator Pattern
A standard interface for 
moving through a collection
Java example: Iterator 
interface in the JCF

Complexity of Bounded-Degree Euclidean MST?

The Euclidean MST 
(Minimum Spanning Tree) 
problem: 

Given n points in the plane, 
determine the MST
Can be solved in O(n log n) 
time by first building the 
Delaunay Triangulation

Bounded-degree version:
Given n points in the plane 
determine the MST where 
each vertex has degree ≤ k

Known to be NP-hard for 
k=3 [Papadimitriou & 
Vazirani 84]
O(n log n) algorithm for 
k=5 (or greater)

Can show Euclidean 
MST has degree ≤ 5

Unknown for k=4
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Runtime for Euclidean MST in Rd?

Given n points in dimension 
d, determine the MST

Is there an algorithm with 
runtime close to the 
Ω(n log n) lower bound?

Can solve in time 
O(n log n) for d=2

For large d, it appears that 
runtime approaches O(n2)

Best algorithms for general 
graphs run in time linear in 
m = number of edges

But for Euclidean distances 
on points, the number of 
edges is n(n-1)/2

O(n2) Time for X+Y Sorting?
How long does it take to a sort an 

n-by-n table of numbers?

O(n2log n) because there are n2

numbers in the table

What if it’s an addition table?
Shouldn’t it be easier to sort 
than an arbitrary set of n2

numbers?

There is a technique [Fredman 
76] that uses just O(n2) 
comparisons

But it uses O(n2log n) time 
[Lambert 92] to decide which
comparisons to use

This problem is closely related 
to the problem of sorting the 
vertices of a line arrangement

n-by-n

+ 1 3 5 8
2 3 5 7 10
10 11 13 15 18
12 13 15 17 20
14 15 17 19 22

O(n log n) Time for ShellSort?

Is there a sequence of ShellSort step-sizes for 
which ShellSort runs in time O(n log n)?

There is a sequence for which ShellSort runs in 
time O(n log2n)

Pratt sequence: numbers of the form 2p3q arranged in 
order

3SUM in Subquadratic Time?
Given a set of n integers, 
are there three that sum to 
zero?

O(n2) algorithms are easy 
(e.g., use a hashtable)
Are there better 
algorithms?

This problem is closely 
related to many other 
problems [Gajentaan &
Overmars 95]

Given n lines in the plane, 
are there 3 lines that 
intersect in a point?
Given n triangles in the 
plane, does their union 
have a hole?

Great-Circle Graph 3-Colorable?
Build a graph by drawing 
great-circles on a sphere

Create a vertex for each 
intersection
Assume no three great 
circles intersect in a point

Is the resulting graph 3-
colorable?

All arrangements for up to 
11 great circles have been 
verified as 3-colorable

For general circles on the 
sphere (or for circles on the 
plane) the graph can require 
4 colors

The Big Question: Is P=NP?
P represents problems that can 
be solved in polynomial time

These problems are said to be 
tractable
Problems that are not in P are 
said to be intractable

NP represents problems that, 
for a given solution, the 
solution can be checked in 
polynomial time

For ease of comparison, 
problems are usually stated as 
yes-or-no questions

Examples

Given a weighted graph G and 
a bound k, does G have a 
spanning tree of size ≤ k?

This is in P because we have 
an algorithm for the MST 
with runtime O(m + n log n)

Given graph G, does G have a 
cycle that visits all vertices?

This is in NP because, given a 
possible solution, we can 
check in polynomial time that 
it’s a cycle and that it visits 
all vertices
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Current Status: P vs. NP
It’s easy to show that 
P ⊆ NP
Most researchers believe 
that P ≠ NP

But at present, there is no 
proof
We do have a large 
collection of NP-complete 
problems

If any NP-complete 
problem has a polynomial 
time algorithm then they 
all do

Definition: A problem B is 
NP-complete if, by making 
use of an imaginary fast 
subroutine for B, any 
problem in NP could be 
solved in polynomial time

[Cook 1971] showed a 
particular problem to be 
NP-complete
[Karp 1972] showed that 
many useful problems are 
NP-complete

NP-Complete Problems
Graph coloring: Given graph G 
and bound k, is G k-colorable?

Planar 3-coloring: Given planar 
graph G, is G 3-colorable?

Traveling Salesman: Given 
weighted graph G and bound k, 
is there a cycle of cost ≤ k that 
visits each vertex exactly once

Hamiltonian Cycle: Give graph 
G, is there a cycle that visits 
each vertex exactly once?

What if you really need an 
algorithm for an NP-complete 
problem?

Some special cases can be 
solved in polynomial time

If you’re lucky, you have such 
a special case

Otherwise, once a problem is 
shown to be NP-complete, the 
best strategy is to start 
looking for an approximation

For a while, a new proof 
showing a problem NP-complete 
was enough for a a paper

Nowadays, no one is interested 
unless the result is somehow 
unexpected


