
 1

CS211
GUI Dynamics

 2

Announcements
� Prelim 2 rooms:

� A-M are in Olin 155
� N-A are in Olin 255

� Final exam:
� final exam 5/17, 9-11:30am
� final review session (TBA, likely Sun 5/15)

� Consulting:
� regular consulting ends Thur, May 5
� special consulting/office hours afterwards (TBA)

 3

Motivation/Overview
� Reminders

� GUI statics: painting Components in Containers on
computer screen

� GUI dynamics: causing and responding to actions
� What actions?

� called events
� need to write code that "understands" how to handle them

and what do
� objects that handle events must "hear" the events and

have methods that “know” what to do for each event
� What objects?

� events and listeners
� overview: see Intro.java from last time...

 4

Example Revisted
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Intro extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel(generateLabel());
public static void main(String[] args) {
Intro f = new Intro();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100);
f.setVisible(true);

}
public Intro () {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b);
add(label);
b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
count++;
label.setText(generateLabel());

} }) ;
}

 private String generateLabel() {
 return "Count: "+Integer.toString(count);
}

}

1

 5

Delegation Model (Intro)
� Roadmap for learning GUI dynamics:

� user/program does something to component...
� Java issues an event object...
� A special type of object "hears" that event...

� That listener has a method that "handles" the event
� The handler does whatever the programmer programmed

� So...
� what do you need to learn?

� events: how to make components issue events
� listeners: how to make a component listen for events
� handlers: how to write a method that deals with events

� start with events...

 6

Events
� Event object (or, event):

� signal to program that an action has occurred
� Java creates an internal object (the event object)
� examples: mouse clicked, button pushed, menu selected

� API classes for event objects:
� event object ancestor: java.util.EventObject
� most events you need are in java.awt.event
� some events are in javax.swing.event

� Portion of hierarchy:
EventObject java.util
AWTEvent java.awt
ActionEvent java.awt.event
ComponentEvent java.awt.event
InputEvent java.awt.event
MouseEvent java.awt.event
KeyEvent java.awt.event

 7

Event Source
� What kinds of events can be issued?

� user interacts with a component
� the component generates the event (an object)
� define special object: event source

� the object on which the user generates an event
� usually components (see GUI statics),

but could be other objects

 User Action

click button
select menu item
dialog window

Event Object

ActionEvent
ActionEvent
WindowEvent

 Event Source

JButton
JMenuItem
JDialog

 8

Source and Event Objects
� How to connect?

� event objects can identify their types and source objects
� useful method inherited from EventObject:

� Object getSource()
return the source object of the Event

� example) user could press multiple buttons:
�public void actionPerformed(ActionEvent e) {

�if (e.getSource()==Button1)
�{ /* do something */ }
�else if (e.getSource()==Button2)
�{ /* do something else */ }
�// and so on

�}

� example)
see actionPerformed(...) in Intro

� Still need special objects to listen for the events....

2

 9

Event Listeners
� Delegation model revisted:

� user acts on source object
� source object generates event object
� listener object acts on the generated event

� Event listener (or listener object, or just listener):
� object that can “hear” (receive) an event object
� designed to perform actions based on events

(hint: see previous slide)
� need to register listeners with components

User Event Listener
Object ObjectAction

Source
Object

trigger
event

create
event

notify
listener

 10

Listener Interfaces
� To make listener objects, you need listener classes:

� Java provides listener interfaces that you implement
� By implementing a listener interface, a class can provide

listener objects for...you guessed it!...listening
� Listener interfaces:

� typical pattern: TypeEvent�TypeListener
� eg) ActionEvent�ActionListener
� Types of listeners: see java.util.EventListener

� How to implement a listener....?

 11

Implementing Listener Interface
� Which class should be a listener? typical choices:

� top-level container that "contains" whole GUI
�public class MyGUI extends JFrame implements ActionListener

� inner classes to create specific listeners for reuse
�private class LabelMaker implements ActionListener

� anonymous classes for "on the spot"
�b.addActionListener(new ActionListener() {...});

� Listeners and handlers:
� consequence of implementing an interface:

must implement that interface's methods
� listener's methods are called handlers:

methods that handle event objects heard by listeners

 12

Examples
� Some listeners and their handlers:

� ActionListener�must implement
void actionPerformed(ActionEvent e)

� KeyListener�must implement
void keyPressed(KeyEvent e)
void keyReleased(KeyEvent e)
void keyTyped(KeyEvent e)

� Identifying source object:
� getSource()

(from java.util.EventObject)
� see specific event classes for other methods

3

 13

Registering Listeners
� How does a component know which listener to use?
� You must register listeners:

� must “connect” listener objects to source objects
� connection process called registering listeners
� you write code that adds listeners to a component

� Syntax:
component.addTypeListener(Listener)

� examples)
�b.addActionListener(this) /* GUI class is also a listener */
�/* handlers use method, like event.getSource() to identify
� source objects */
�

�b.addActionListener(new ActionListener() { /* handler */ });
�/* define handler "on the spot" */

 14

Rules and Examples
� Rules:

� source object could notify many listeners
� register multiple listeners to source object

� multiple source objects can share same listener
� ex) GUI class is listener
� use getSource to identify source object

http://java.sun.com/docs/books/tutorial/uiswing/events/generalrules.html
� Some examples?

� no inner classes
� nested class
� anonymous class

 15

Example 1: no inner classes
// Counter1: frame implements listener

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Counter1 extends JFrame implements ActionListener {
 private int count;
 private JButton b;
 private JLabel l;

 public static void main(String[] args) {
 Counter1 c = new Counter1();
 c.setVisible(true);
 }

 public Counter1() {
 setGUI();
 setLayout();
 registerListeners();
 }

 16

Example 1 continued
 private void setGUI() {
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setSize(200,100);
 }

 private void setLayout() {
 setLayout(new FlowLayout(FlowLayout.LEFT));
 b = new JButton("Push Me!");
 add(b);
 l = new JLabel(generateLabel());
 add(l);
 }

 private void registerListeners() {
 b.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 count++;
 l.setText(generateLabel());
 }

 private String generateLabel() {
 return "Count: "+count;
 }
}

4

 17

Example 2: nested classes
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Counter2 extends JFrame {

 private int count;
 private JButton b = new JButton("Push Me!");
 private JLabel label = new JLabel(generateLabel());

 public static void main(String[] args) {
 Counter2 f = new Counter2();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setSize(200,100);
 f.setVisible(true);
 }

 18

Example 2 continued
 public Counter2() {
 setLayout(new FlowLayout(FlowLayout.LEFT));
 add(b);
 add(label);
 b.addActionListener(new LabelMaker());
 }

 private String generateLabel() {
 return "Count: "+count;
 }

 private class LabelMaker implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 count++;
 label.setText(generateLabel());
 }
 }

}

Example 3: anonymous classes
see initial example in these notes (Intro)
others? see website and Tutorial

5

