Priority Queues and Heaps

The Bag Interface

interface Bag<E> {
void put(E obj);
E get(); //extract some element
boolean isEmpty();

3

Examples: Stack, Queue

Stacks and Queues as Lists

« Stack (LIFO) implemented as list
— put(Q), get() from front of list

* Queue (FIFO) implemented as list
— put() on back of list, get() from front of list

« All Bag operations are O(1)

first

last

Priority Queue

* A Bag in which data items are Comparable

« lesser elements (as determined by
compareTo()) have higher priority

=get() returns the element with the highest
priority = least in the compareTo() ordering

* break ties arbitrarily

Examples

¢ Scheduling jobs to run on a computer
— default priority = arrival time
— priority can be changed by operator
» Scheduling events to be processed by an
event handler
— priority = time of occurrence
* Airline check-in
— first class, business class, coach
— FIFO within each class

Priority Queues

interface Bag<E> {
void put(E obj);
E get(); //extract some element
boolean isEmpty();

3

interface PriorityQueue<kE extends Comparable>
extends Bag<kE> {}

Priority Queues as Lists

* Maintain as unordered list
— put() puts new element at front — O(1)
— get() must search the list — O(n)

* Maintain as ordered list
— put() must search the list — O(n)
— get() gets element at front — O(1)

« In either case, O(n?) to process n elements

Can we do better?

Important Special Case

* Fixed number of priority levels 0,....p — 1
* FIFO within each level
» Example: airline check-in

eput()-insert in appropriate queue — O(1)
=get()— must find a nonempty queue — O(p)

Heaps

« A heap is a concrete data structure that can
be used to implement priority queues
« Gives better complexity than either ordered
or unordered list implementation:
- put(), get() — O(log n)
— isEmpty() -0(1)
* O(n log n) to process n elements
« Do not confuse with heap memory, where
the Java virtual machine allocates space for
objects — different usage!

Heaps

« Binary tree with data at each node
« Satisfies the Heap Order Invariant:

The least (highest priority)
element of any subtree is found
at the root of that subtree

least element of any subtree
is always found at the root
of that subtree

|

but it is possible to have
smaller elements deeper
in the tree!

Examples of Heaps

« Ages of people in family tree
— parent is always older than children, but you can
have an uncle who is younger than you

« Salaries of employees of a company
—bosses generally make more than subordinates,
but a VP in one subdivision may make less than a
Project Supervisor in a different subdivision

Balanced Heaps

Two restrictions:

1. Any node of depth < d — 1 has exactly 2
children, where d is the height of the tree
— implies that any two maximal paths (path from
a root to a leaf) are of length d or d — 1, and
the tree has at least 29 nodes
2. All maximal paths of length d are to the left
of those of lengthd — 1

A Balanced Heap

Store in an Array or Vector

« Elements of the heap are stored in the array
in order, going across each level from left to
right, top to bottom

 The children of the node at array index n are
found at 2n + 1 and 2n + 2

» The parent of node n is found at (n — 1)/2

Store in an Array or Vector

children of node n are found at 2n + 1 and 2n + 2

put(Q)

« Put the new element at the end of the array

« If this violates heap order because it is
smaller than its parent, swap it with its parent

« Continue swapping it up until it finds its
rightful place

* The heap invariant is maintained!

putQ)

 Time is O(log n), since the tree is balanced
—size of tree is exponential as a function of depth
—depth of tree is logarithmic as a function of size

put(Q)

class PQ<E extends Comparable> extends java.util._Vector<g>
implements PriorityQueue<E> {

public void put(E obj) {
add(obj); //add new element to end of array
rotateUp(size() - 1);

private void rotateUp(int index) {
if (index == 0) return;
int parent = (index - 1)/2;
if (elementAt(parent).compareTo(elementAt(index)) <= 0)
return;
swap(index, parent);
rotateUp(parent);

get()

* Remove the least element — it is at the root

* This leaves a hole at the root —fill it in with
the last element of the array

« If this violates heap order because the root
element is too big, swap it down with the
smaller of its children

« Continue swapping it down until it finds its
rightful place

» The heap invariant is maintained!

get()

« Time is O(log n), since the tree is balanced

get(Q)
public E get() {

if (isEmpty()) throw new NoSuchElementException();
E temp = elementAt(0);
setElementAt(elementAt(size() - 1), 0);
setSize(size() - 1);

rotateDown(0);

return temp;

private void rotateDown(int index) {

int child = 2*(index + 1); //right child

if (child >= size()
|1 elementAt(child - 1).compareTo(elementAt(child)) < 0)

child -= 1;

if (child >= size()) return;

if (elementAt(index).compareTo(elementAt(child)) <= 0)
return;

swap(index, child);

rotateDown(child);

HeapSort

Given a Comparable[] array of length n,

1. Put all n elements into a heap — O(n log n)
2. Repeatedly get the min — O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pgq = new PQ<Comparable>();
for (Comparable x : a) { pg.put(x); }
for (int i = 0; 1 < a.length; i++) { a[i] = pg.getQ); }
3

