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Minimal Spanning Trees Reading. Weiss, 
sec. 24.2.2

Real quotes from a Dilbert-quotes contest:

"As of tomorrow, employees will be able to access the building  only using 
individual security cards. Pictures will be taken next Wednesday and 
employees will receive their cards in two weeks."

(Microsoft Corp. in Redmond, WA)

"What I need is an exact list of specific unknown problems we might 
encounter.” (Lykes Lines Shipping)

"E-mail is not to be used to pass on information or data. It should be used 
only for company business.” (Electric Boat Company)

"This project is so important, we can't let things that are more important 
interfere with it.” (United Parcel Service)

Spanning Tree

Assume you have a directed or undirected graph.

Spanning tree of a graph is tree such that
– Tree has same set of nodes
– Set of tree edges is a subset of graph edges
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BFS and DFS Walk

Pre-order traversal gives a depth-first search (DFS) of a tree. 
Breadth-first search (FBS) as in second diagram
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Breadth-first Spanning Tree
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Depth-first Spanning Tree

A is root of tree. 
Tree edges are red.

To build a spanning tree: (1) start with one node, A, as root. 
(2) At each step, add to tree one edge from a node in tree to a 
node that is not yet in the tree. 
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V = {A};  E = {};   s = (A,F), (A,G), (A,B) // s: stack of edges
Step 1: Take (A,F) off stack and add to E;

push onto s edges leaving F.
V = {A,F};  E = {(A,F)};   s =  (F,E), (F,I), (F,A) (A,G), (A,B)
Step 2: Take (F,E) off s and add to E;

push onto s edges leaving E.
V = {A,F,E};  E = {(A,F),(F,E)}; 
s =  (E,F), (E,I), (E,D),

(F,I), (F,A) (A,G), (A,B)

Build a DFS spanning tree (V, E). Use a stack
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Build a DFS spanning tree (V, E)

V = {A};   E = {};    //start off with one-node tree
s = stack of edges to neighbors of A;   // s is a stack of edges
/** invariant:(V,E) is a tree.

For all edges (v,w) in s: v is in V and (v,w) not in E.
Any node in graph that is not in V is reachable from the

end node of some edge in s. **/
while (s is not empty do) {

(v, w) = pop(s); //  Take top edge (v,w) off s;
if (w is not in V) {

Add w to V; add (v,w) to E;
Push onto s all edges with start node w;

}
}
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V = {A};  E= {};   s = (A,F), (A,G), (A,B) // s: queue of edges
Step 1: Take (A,F) off s and add to E;

push onto s edges leaving F.
V = {A,F};  E = {(A,F)};   s = (A,G), (A,B), (F,E), (F,I), (F,A)
Step 2: Take (A,G) off s and add to E;

push onto s edges leaving G.
V = {A,F,G};  E = {(A,F),(A,G)}; 
s = (A,B), (F,E), (F,I), (F,A),

(G,I), (G,H), (G,B), (G,A)

Build a BFS spanning tree (V, E). Use a queue.

After taking an edge (v,w) off queue:
if w already in V, don’t do anything
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Build a BFS spanning tree (V, E)

V = {A};   E = {};    //start off with one-node tree
s = queue of edges to neighbors of A;   // s is a queue of edges
/** invariant:(V,E) is a tree.

For all edges (v,w) in s: v is in V and (v,w) not in E.
Any node in graph that is not in V is reachable from the

end node of some edge is s. **/
while (s is not empty do) {

(v, w) = pop(s); //  Take top edge (v,w) off s;
if (w is not in V) {

Add w to V; add (v,w) to E;
Push onto s all edges with start node w;

}
}
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Build a DFS or BFS spanning tree (V, E)

Building a DFS spanning tree and building a BFS 
spanning tree are essentially the same algorithm.

DFS algorithm uses a stack of
edges to process

BFS algorithm uses a stack of
edges to process
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Property 1 of spanning trees 

• Graph: G = (V,E) 
• Spanning tree: T = (V,ET,R)
• Choose any edge: c = (u,v) in G but not in T
• There is a simple cycle containing only edge c and edges in 

spanning tree.
• Proof: Let w be the first node in common to paths from u 

to root of tree and from v to root of tree. The paths u v, 
v w,w u can be catenated to form the desired cycle.

edge (I,H):
w is node G
simple cycle is (I,H,G,I)

edge (H,C):
w is node A
simple cycle is (H,C,B,A,G,H)
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Useful lemma

• In any tree T = (V,E), |E|=|V| – 1
For all n>0, P(n) holds, where

P(n) for a tree with n (>0) nodes: |E| = |V| – 1
Proof by induction on n

* n = 1. tree with node has 0 edges. 0 = 1 - 1.
* Assume P(n) for some n, 0 < n. Consider a tree S=(VS, ES) with n+1 nodes.

S has a leaf. Remove 1 leaf (and the edge to it) to give a tree T with n
nodes.  By inductive assumption, P(n),  |ET| = |VT|-1. Since |ES| = |ET|+1 
and |VS|=|VT|+1, the result follows.

• An undirected graph G = (V,E) is a tree iff 
(1) it is connected
(2) |E| = |V| – 1

Property 2 of spanning trees 

• Graph: G = (V,E) 
• Spanning tree: T = (V,ET,R)
• Choose any edge: c = (u,v) in G but not in T
• There is a simple cycle Y containing only edge c and edges 

in spanning tree. Moreover, inserting edge c into T and 
deleting any edge (s t) in Y gives another spanning tree 
T1.
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edge (H,C):
simple cycle is (H,C,B,A,G,H)
adding (H,C) to T and deleting (A,B) 
gives another spanning tree
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Proof of Property 2

• T1 is connected.
- Otherwise, assume node a is not reachable from node b

in T1.  In T, there is a path from b to a that contains
edge (s→t).  In this path, replace edge (s→t) by the path in
T1 obtained by deleting (s→t) from the cycle Y, 
which gives a path from b to a.

• In T1, numbers of edges = number of nodes –1
- Proof: by construction of T1 and fact that T is a tree

• Therefore, from lemma, T1 is a tree.

• Assume an undirected graph
G = (V,E) with weights on each edge

• Spanning tree of graph G is tree                            
T = (V,ET)
– Tree has same set of nodes
– All tree edges are graph edges
– Weight of spanning tree = sum of tree edge weights

• Minimal Spanning Tree (MST)
– Any spanning tree whose weight is minimal
– A graph can have several MST’s
– Applications: phone network design etc.

Weighted Spanning Trees
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Caution: in general, SSSP tree     
is not MST

• Intuition:
– SSSP: fixed start node 
– MST: at any point in 

construction,  we have a 
bunch of nodes that we 
have reached, and we look 
at the shortest distance 
from any one of those 
nodes to a new node
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Prims’s algorithm

Use the DFS algorithm given earlier, but consider s to be a set 
rather than a stack.
At each iteration, choose the edge (v,w) from s that has 
minimum weight.
Hence, maintain s as a min-heap!

That’s it!

Proof that this actually constructs a minimal spanning tree is 
not given here.

This is a greedy algorithm: At each step, it chooses the best.

Kruskal’s algorithm

// Find a minimum-weight spanning tree for graph (V, E).
Sort the edges by weight;
VT= V; ET= empty   // the vertices and edges of tree
for each edge (v,w) (in order of increasing weight):

if (adding (v,w) does not create a cycle) {
Add (v,w) to ET;

}
Greedy algorithm: at each 
stage it picks the next best 
edge to add.

Difficulty is testing 
whether a cycle is created.
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Editorial notes

• Dijkstra’s algorithm and Prim’s algorithm 
are examples of greedy algorithms:
– making optimal choice at each step of the 

algorithm gives globally optimal solution
• In most problems, greedy algorithms do not 

yield globally optimal solutions
– (e.g.) Traveling Salesman Problem


