
1

Minimal Spanning Trees Reading. Weiss,
sec. 24.2.2

Real quotes from a Dilbert-quotes contest:

"As of tomorrow, employees will be able to access the building only using
individual security cards. Pictures will be taken next Wednesday and
employees will receive their cards in two weeks."

(Microsoft Corp. in Redmond, WA)

"What I need is an exact list of specific unknown problems we might
encounter.” (Lykes Lines Shipping)

"E-mail is not to be used to pass on information or data. It should be used
only for company business.” (Electric Boat Company)

"This project is so important, we can't let things that are more important
interfere with it.” (United Parcel Service)

Spanning Tree

Assume you have a directed or undirected graph.

Spanning tree of a graph is tree such that
– Tree has same set of nodes
– Set of tree edges is a subset of graph edges

A B

C

DE

F

G

HI

A B

C

DE

F

G

HI

Tree Another tree

BFS and DFS Walk

Pre-order traversal gives a depth-first search (DFS) of a tree.
Breadth-first search (FBS) as in second diagram

1 1

2

3

2 3

4

45

5 66

7

7

DFS BFS

Nodes numbered in the order visited

Two spanning trees of the same graph

A B

G

HI

Breadth-first Spanning Tree

0
1

2
A B

C

DE

F

G

HI

1

2
3

4

5

6

7 8

9

Depth-first Spanning Tree

A is root of tree.
Tree edges are red.

To build a spanning tree: (1) start with one node, A, as root.
(2) At each step, add to tree one edge from a node in tree to a
node that is not yet in the tree.

F

E D

C

V = {A}; E = {}; s = (A,F), (A,G), (A,B) // s: stack of edges
Step 1: Take (A,F) off stack and add to E;

push onto s edges leaving F.
V = {A,F}; E = {(A,F)}; s = (F,E), (F,I), (F,A) (A,G), (A,B)
Step 2: Take (F,E) off s and add to E;

push onto s edges leaving E.
V = {A,F,E}; E = {(A,F),(F,E)};
s = (E,F), (E,I), (E,D),

(F,I), (F,A) (A,G), (A,B)

Build a DFS spanning tree (V, E). Use a stack

C

A B

DE

F

G

HIAfter taking an edge (v,w) off stack:
if w already in V, don’t do anything

Build a DFS spanning tree (V, E)

V = {A}; E = {}; //start off with one-node tree
s = stack of edges to neighbors of A; // s is a stack of edges
/** invariant:(V,E) is a tree.

For all edges (v,w) in s: v is in V and (v,w) not in E.
Any node in graph that is not in V is reachable from the

end node of some edge in s. **/
while (s is not empty do) {

(v, w) = pop(s); // Take top edge (v,w) off s;
if (w is not in V) {

Add w to V; add (v,w) to E;
Push onto s all edges with start node w;

}
}

A B

DE

F

G

HI
C

2

V = {A}; E= {}; s = (A,F), (A,G), (A,B) // s: queue of edges
Step 1: Take (A,F) off s and add to E;

push onto s edges leaving F.
V = {A,F}; E = {(A,F)}; s = (A,G), (A,B), (F,E), (F,I), (F,A)
Step 2: Take (A,G) off s and add to E;

push onto s edges leaving G.
V = {A,F,G}; E = {(A,F),(A,G)};
s = (A,B), (F,E), (F,I), (F,A),

(G,I), (G,H), (G,B), (G,A)

Build a BFS spanning tree (V, E). Use a queue.

After taking an edge (v,w) off queue:
if w already in V, don’t do anything

A B

DE

F

G

HI
C

Build a BFS spanning tree (V, E)

V = {A}; E = {}; //start off with one-node tree
s = queue of edges to neighbors of A; // s is a queue of edges
/** invariant:(V,E) is a tree.

For all edges (v,w) in s: v is in V and (v,w) not in E.
Any node in graph that is not in V is reachable from the

end node of some edge is s. **/
while (s is not empty do) {

(v, w) = pop(s); // Take top edge (v,w) off s;
if (w is not in V) {

Add w to V; add (v,w) to E;
Push onto s all edges with start node w;

}
}

A B

DE

F

G

HI
C

Build a DFS or BFS spanning tree (V, E)

Building a DFS spanning tree and building a BFS
spanning tree are essentially the same algorithm.

DFS algorithm uses a stack of
edges to process

BFS algorithm uses a stack of
edges to process

A B

DE

F

G

HI
C

Property 1 of spanning trees

• Graph: G = (V,E)
• Spanning tree: T = (V,ET,R)
• Choose any edge: c = (u,v) in G but not in T
• There is a simple cycle containing only edge c and edges in

spanning tree.
• Proof: Let w be the first node in common to paths from u

to root of tree and from v to root of tree. The paths u v,
v w,w u can be catenated to form the desired cycle.

edge (I,H):
w is node G
simple cycle is (I,H,G,I)

edge (H,C):
w is node A
simple cycle is (H,C,B,A,G,H)

A B

C

DE

F

G

HI

Useful lemma

• In any tree T = (V,E), |E|=|V| – 1
For all n>0, P(n) holds, where

P(n) for a tree with n (>0) nodes: |E| = |V| – 1
Proof by induction on n

* n = 1. tree with node has 0 edges. 0 = 1 - 1.
* Assume P(n) for some n, 0 < n. Consider a tree S=(VS, ES) with n+1 nodes.

S has a leaf. Remove 1 leaf (and the edge to it) to give a tree T with n
nodes. By inductive assumption, P(n), |ET| = |VT|-1. Since |ES| = |ET|+1
and |VS|=|VT|+1, the result follows.

• An undirected graph G = (V,E) is a tree iff
(1) it is connected
(2) |E| = |V| – 1

Property 2 of spanning trees

• Graph: G = (V,E)
• Spanning tree: T = (V,ET,R)
• Choose any edge: c = (u,v) in G but not in T
• There is a simple cycle Y containing only edge c and edges

in spanning tree. Moreover, inserting edge c into T and
deleting any edge (s t) in Y gives another spanning tree
T1.

A B

C

DE

F

G

HI

edge (H,C):
simple cycle is (H,C,B,A,G,H)
adding (H,C) to T and deleting (A,B)
gives another spanning tree

3

Proof of Property 2

• T1 is connected.
- Otherwise, assume node a is not reachable from node b

in T1. In T, there is a path from b to a that contains
edge (s→t). In this path, replace edge (s→t) by the path in
T1 obtained by deleting (s→t) from the cycle Y,
which gives a path from b to a.

• In T1, numbers of edges = number of nodes –1
- Proof: by construction of T1 and fact that T is a tree

• Therefore, from lemma, T1 is a tree.

• Assume an undirected graph
G = (V,E) with weights on each edge

• Spanning tree of graph G is tree
T = (V,ET)
– Tree has same set of nodes
– All tree edges are graph edges
– Weight of spanning tree = sum of tree edge weights

• Minimal Spanning Tree (MST)
– Any spanning tree whose weight is minimal
– A graph can have several MST’s
– Applications: phone network design etc.

Weighted Spanning Trees

Example
A B

C

DE

F

G

HI

2
4

2
1

6

9 5 6
2 5

4
51

3 1

Graph SSSP tree (nodes in
order chosen by
Dijkstra’s shortest
path algoritm

Minimal spanning tree

weight 16

weight 18

C

C

2

2

4

4
2

2

2

2

1

1

1

1

1

13

3

5

5 6

6

6

6

5 5

5
5

4

4

A

A

F

F

D

D

E

E

B

B

H

H

I

I

G

G

9

9

Caution: in general, SSSP tree
is not MST

• Intuition:
– SSSP: fixed start node
– MST: at any point in

construction, we have a
bunch of nodes that we
have reached, and we look
at the shortest distance
from any one of those
nodes to a new node

4 4

1

4 4 4

1
SSSP Tree MSP

Prims’s algorithm

Use the DFS algorithm given earlier, but consider s to be a set
rather than a stack.
At each iteration, choose the edge (v,w) from s that has
minimum weight.
Hence, maintain s as a min-heap!

That’s it!

Proof that this actually constructs a minimal spanning tree is
not given here.

This is a greedy algorithm: At each step, it chooses the best.

Kruskal’s algorithm

// Find a minimum-weight spanning tree for graph (V, E).
Sort the edges by weight;
VT= V; ET= empty // the vertices and edges of tree
for each edge (v,w) (in order of increasing weight):

if (adding (v,w) does not create a cycle) {
Add (v,w) to ET;

}
Greedy algorithm: at each
stage it picks the next best
edge to add.

Difficulty is testing
whether a cycle is created.

4

Editorial notes

• Dijkstra’s algorithm and Prim’s algorithm
are examples of greedy algorithms:
– making optimal choice at each step of the

algorithm gives globally optimal solution
• In most problems, greedy algorithms do not

yield globally optimal solutions
– (e.g.) Traveling Salesman Problem

