

Lecture 31

Regression Inference

Announcements


```
np.average(grades2.column('Total Score'))
```

78.88333333333334

```
np.std(grades2.column('Total Score'))
```

10.807546231941622

Announcements

- Prelim 2 regrade requests by Monday 5/3, 5PM
- Lab 9 today/Thursday
- HW 5 due this Friday at 5:59PM, usual 1 point bonus for turning in by Thursday midnight.
- Project 3 out Friday, Part 1 due 5/7, Part 2 due 5/14.
- Labs the week of 5/3 and 5/10 will be dedicated to Project 3.
- Final May 22, 1:30PM

Prediction

If we have a line describing the relation between two variables, we can make predictions

Regression Line Equation

In original units, the regression line has this equation:

$$\left| \frac{\text{estimate of } y - \text{average of } y}{\text{SD of } y} \right| = r \times \left| \frac{\text{the given } x - \text{average of } x}{\text{SD of } x} \right|$$

y in standard units

x in standard units

$$y = \text{slope} \times x + \text{intercept}$$

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

Errors and Predictions

- error = actual value prediction
- RMSE = root mean square error
- Regression line has the minimum RMSE of all lines
- Names:
 - Regression line
 - Least squares line
 - "Best fit" line

Summary: What we can learn from r

- How clustered points are around a line
- How y depends on x
- How accurate linear regression predictions will be

Prediction from a Sample

Prediction from a Sample

- We've been treating dataset as though it were population
- What if we had to make predictions from samples?

(Demo)

Confidence Interval for Prediction

- Bootstrap:
 - Resample the data
 - Get a prediction for y using the regression line that goes through the resampled data
 - Repeat the above two steps, many times
- Draw the empirical histogram of all the predictions
- Get the "middle 95%" interval
- That's an approximate 95% confidence interval for the predicted value of y

(Demo x 2)

Is there a 95% chance that the birth weight of a baby born at 288 gestational days is about 122-125?

Yes

No

Test Whether Variables are Correlated

- Null hypothesis: The correlation is 0
- Alternative hypothesis: It's not
- Method:
 - Construct a 95% confidence interval for the correlation using the bootstrap
 - Check if 0 is in the interval

(Demo)