
1	

Conditionals: If-Else-Statements	

Format	

	
if <boolean-expression>:�

<statement>�
…�

else:
 <statement>�

…

Example	

	
 # Put max of x, y in z
 if x > y:
 z = x
 else:
 z = y

Execution: ���

if <boolean-expression> is true, then execute statements indented
under if; otherwise execute the statements indented under elsec	

Conditionals: If-Elif-Else-Statements	

Format	

	
if <boolean-expression>:�

<statement>�
…�

elif <boolean-expression>:
 <statement>�

…
 …
else:
 <statement>�

…

Notes on Use	

•  No limit on number of elif

§  Can have as many as want	

§  Must be between if, else

•  The else is always optional	

§  if-elif by itself is fine	

•  Booleans checked in order	

§  Once it finds a true one, it

skips over all the others	

§  else means all are false	

Local Variables Revisited	

•  Never refer to a variable
that might not exist	

•  Variable “scope”	

§  Block (indented group)

where it was first assigned	

§  Way to think of variables; ���

not actually part of Python	

•  Rule of Thumb: Limit
variable usage to its scope	

def max(x,y):
 """Returns: max of x, y"""
 # swap x, y�
 # put larger in temp
 if x > y:
 temp = x
 x = y
 y = temp

 return temp

First assigned	

Outside scope	

Variation on max	

def max(x,y):
 """Returns: �
 max of x, y"""
 if x > y:
 return x
 else:
 return y	

There are two returns!���
But only one is executed	

Which is better?	

Matter of preference	

For Loops: Processing Sequences	

	
The for-loop:	

 for x in seq:�
 print x

���
	

•  loop sequence: seq
•  loop variable: x
•  body: print x

To execute the for-loop:	

1.  Check if there is a “next”

element of loop sequence	

2.  If not, terminate execution	

3.  Otherwise, put the element

in the loop variable	

4.  Execute all of the body	

5.  Repeat as long as 1 is true	

seq has 	

more elts	

put next ���
elt in x

True

False
print x

Example: Summing the Elements of a List	

def sum(thelist):
 """Returns: the sum of all elements in thelist
 Precondition: thelist is a list of all numbers �
 (either floats or ints)"""
 result = 0

 for x in thelist:
 result = result + x

 return result

•  loop sequence: thelist
•  loop variable: x
•  body: result=result+x

2	

Example: Summing the Elements of a List	

def sum(thelist):
 """Returns: the sum of all elements in thelist
 Precondition: thelist is a list of all numbers �
 (either floats or ints)"""
 result = 0

 for x in thelist:
 result = result + x

 return result

•  loop sequence: thelist
•  loop variable: x
•  body: result=result+x

Accumulator
variable

For Loops and Conditionals	

def num_ints(thelist):
 """Returns: the number of ints in thelist
 Precondition: thelist is a list of any mix of types"""
 result = 0
 for x in thelist:
 if type(x) == int:
 result = result+1
 return result

Body

for-loops: Beyond Sequences	

•  Work on iterable objects	

§  Object with an ordered

collection of data	

§  This includes sequences	

§  But also much more	

•  Examples:	

§  Text Files (built-in)	

§  Web pages (urllib2)	

•  2110: learn to design
custom iterable objects 	

def blanklines(fname):
 """Return: # blank lines in file fname
 Precondition: fname is a string"""
 # open makes a file object
 file = open('myfile.txt')

 # Accumulator
 count = 0
 for line in file: # line is a string
 if len(line) == 0: # line is blank
 count = count+1

 f.close() # close file when done
 return count

Beyond Sequences: The while-loop

while <condition>:
 statement 1
 …
 statement n

•  Relationship to for-loop
§  Broader notion of

“still stuff to do”
§  Must explicitly ensure

condition becomes false	

condition	

true	

false	

repetend	

repetend or body	

while Versus for

 # process range b..c
 for k in range(b,c+1)
 process k

 # process range b..c
 k = b
 while k <= c:
 process k
 k = k+1

•  Makes list c+1-b elements	

•  List uses up memory	

•  Impractical for large ranges	

•  Just needs an int	

•  Much less memory usage	

•  Best for large ranges	

Must remember to increment	

Case to Use while	

•  Want square root of c	

§  Make poly f(x) = x2-c 	

§  Want root of the poly���

(x such that f(x) is 0)	

•  Use Newton’s Method	

§  x0 = GUESS (c/2??)	

§  xn+1 = xn – f(xn)/f'(xn)	

 = xn – (xnxn-c)/(2xn)	

 = xn – xn/2 + c/2xn	

 = xn/2 + c/2xn	

§  Stop when xn good enough	

	

def sqrt(c):
 """Return: square root of c
 Uses Newton’s method
 Pre: c >= 0 (int or float)"""
 x = c/2
 # Check for convergence
 while abs(x*x – c) > 1e-6:
 # Get xn+1 from xn
 x = x / 2 + c / (2*x)

 return x

