
1

CS101J, Cornell 0

Specifications of methods
What do the two methods mini do?

Specification tells us what a method does.

You should never have to look at a method
body to figure out what a method does.

/** Return s but with all blanks
 removed and all capitals
 changed to lowercase. */
public static String mini(String s){

}

s= s.replace(‘’ ‘’, ‘’’’);
return s.toLowerCase();

public static int mini(int i) {

}
return Integer.signnum(i);

Body: see how task is carried out.
Spec: see what the task is.

CS101J, Cornell 1

Procedure specifications

/** Javadoc comment */
<method header> {
 …
}

/** Set the title to t. */
public void setTitle(String t)
 {...}

1. The spec explains what each parameter
is for (so, it must mention all of them).

2. The spec is a command to do something.

setTitle(“I want peace”);

Set the title to “I want
peace”;

CS101J, Cornell 2

/** = “a, b, and c are in ascending
 order”. */
public static boolean areAscending(
 int a, int b, int c) {
 return a < b && b < c;
}

Function specifications

/** Return true if a, b, and c are
 in ascending order. */

A function call produces a value.

The function spec should say what the function-
call value equals.

CS101J, Cornell 3

Constructor specifications

/** Constructor: a new instance with
 chapter number n, chapter title
 t, and previous chapter null
 */
public Chapter(int n, String t)
 {...}

CS101J, Cornell 4

Good specifications

•Written before the method body

•Accurate and complete

• Include preconditions —constraints on
the parameters that must be satisfied in a
call, constraints that the caller must be
aware of.

/** = the square root of r.
 Precondition: r >= 0. */
public double sqrt(double r)
 { … }

CS101J, Cornell 5

/** = “a, b, and c are in
ascending order”. */
public boolean areAscending(
 int a, int b, int c) {
 return a < b && b < c;
}

Changing the spec

1. Change the specification to say what the
method will now do.

2. Change the body to keep the specification
accurate.

/** = “a, b, and c are in non-
descending order”. */

 return a <= b && b <= c;

