
CS1114 Assignment 5
out: Monday, April 1, 2013.
due: Friday, April 5, 2013, 5PM.

This assignment covers two topics: interpolation and applying image transforma-
tions. (Part 2 will cover the opposite problem, computing image transformations from
pairs of overlapping images.) As usual, stub functions for the code you need to write
can be found in

/courses/cs1114/student_files/A5P1.

Please copy these to your working directory.

1 Interpolation

Recall from lecture that interpolation involves figuring out a value at a point where
you don’t have data, but inside the range where you do. There are many techniques
for interpolation, and we covered some of them in class. Let’s start by considering
linear interpolation in one dimension.

Suppose we have a (x, y) values with uniformly-spaced, integer x-coordinates, e.g.
(1, 0.5), (2, 0.2), (3, 0.6), (4, 0.9). These points, shown in Figure 1(a), might represent,
for instance, the average stock price of Yoyodyne, Inc. for the first four days in Jan-
uary. As we discussed in lecture, linear interpolation fills in the in-between values
by assuming a line segment connects each neighboring pair, as shown in Figure 1(b).
Your first task is to write a function called lerp, which takes in a 1D vector (rep-
resenting samples of a function) and an x value, and results the estimated function
value at x using linear interpolation. Linear interpolation has three main steps: find-
ing the two neighboring data points, computing the weights for the two points, then
computing a weighted average of the values of these two points. See the slides on
interpolation for the formula for doing linear interpolation.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5

(a) Data points (b) Linear interpolation

Figure 1: Example of linear interpolation.

=⇒ Implement the lerp function in lerp.m.

Next, let’s consider a 2D matrix of values at integer grid locations (e.g., a grayscale
image). To interpolate values on a 2D grid, we can use the 2D analogue of linear

1

Figure 2: Bilinear interpolation.

interpolation: bilinear interpolation. In this case, there are four neighbors for each
possible point we’d like to interpolation, and the intensity values of these four neigh-
bors are all combined to compute the interpolated intensity, as shown in Figure 2. In
the figure, the Q values represent intensities. To combine these intensitys, we per-
form linear interpolation in multiple directions: we first interpolate in the x direction
(to get the value at the blue points), then in the y direction (to get the value at the
green points). We can implement this by calling lerp three times.

=⇒ Implement bilinear interpolation in bilerp.m. This function takes in a matrix
(an image, really), and an x, y value to compute the intensity at. You should return
the computed intensity. This function must call your lerp function.

2 Image transformations

First, a note on images: remember that Matlab has different data types for storing an
image (e.g., double, uint8, and logical (for binary images)). The range of intensities
for each type is different (e.g., a double image has intensities in the range [0, 1] and a
uint8 image has intensities in the range [0, 255]).

One other thing you should keep in mind when you’re working with images in this
assignment is that, as you’ve found, you access a value of a matrix by giving the row,
then the column. For a matrix representing an image, this is counter-intuitive, as in
2D coordinate systems the x-value (column) usually precedes the y-value. This is a
source of headaches, but is difficult to get around. In addition the y-axis of an image
in Matlab is inverted. Matlab indexes the image like a matrix, so increasing values
of i move you down in the image, rather than up. This has some slightly annoying
consequences when applying geometric transformations on images.

Next, we’ll use these interpolation functions to help us implement image transforma-

2

Figure 3: The dimensions of a rotated image may vary from the those of the original.

tions. In class, we talked about linear transformations. These have the form:

T =

[
a b
c d

]
To apply a transformation T to a pixel, we multiply T by the pixel’s location (x, y):

T

[
x
y

]
=

[
a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
In Matlab, matrix multiplication is done with the normal * operator. Note that the
number of columns in the 1st matrix must equal the number of rows in the 2nd ma-
trix.

To apply a transformation T to an entire image I, we could apply the transformation
to each of I ’s pixels to map them to the output image. However, this forward warping
procedure has several problems, as mentioned in class. Instead, we’ll use inverse
mapping to warp the pixels of the output image back to the input image. Because
this won’t necessarily hit an integer-valued location, we’ll need to use interpolation to
determine the intensity of the input image at the desired location. You’ll also need to
compute the inverse transform.

One other issue is that the transformed image might not fit into an image of the same
size as the input image, as shown in Figure 3. Thus, you will need to determine the
correct size for the output image. In addition, the image may “spill off” the sides of the
output image, as shown in Figure 4. In class, we talked about adding “translation,”
or shifting of the image, to our model to fix this problem (resulting in affine trans-
formations, which are linear transforms plus translations). However, we will fix this
problem in a different way for this assignment. In particular, you will figure out an
appropriate offset to add or subtract from the pixel locations in the output image be-
fore applying the inverse transformation to them, so that in the end the transformed
image fits completely in the output image.

=⇒ Write a function transform image that takes as input a grayscale image (in
double format) and a 3 × 3 affine transform T . This function will return the trans-
formed image. This function should use inverse warping, and will call your bilerp

3

Figure 4: An image can spill off the sides of the output image if you’re not careful. You’ll need
to add an offset before applying the inverse transformation.

function. We have provided an image duck gray.png included in the A5 directory for
testing.

Next, you will write a function to transform RGB images. To do this, you will simply
call transform image three times, once for each channel, then put the results together
into a single image. You can use the image rgb function to break an RGB image up
into three channels, e.g.:

>> img = imread(’duck_rgb.png’);

>> [R, G, B] = image_rgb(im2double(img));

To assemble the RGB channels back into a single image, you can use the Matlab colon
operator.

=⇒ Write a function transform image rgb that takes as input an RGB image (in
double format), and a 3 × 3 affine transform T , and returns the transformed RGB
image. You must call transform image from this function. You might also find the inv

function handy. You can use the image duck rgb.png to test your function.

To demo your transformation function, please write a function called demo transform

that calls your transform image rgb with several different transformations, and dis-
plays the results. Your function should at least demo:

1. Horizontal flipping
2. Scaling by a factor of 0.5
3. Rotation by 45 degrees around the center of the image

but you may include any others that you like. You will need to figure out the right
transformation matrices to accomplish these tasks.

One simple way to show multiple images at a time is to show them in separate figure

windows. You can use the figure command to accomplish this, bearing in mind that

4

imshow draws an image in the most recently opened figure window (or creates one of
its own if none is open). Please show the original image, as well as the transformed
images. You may use the image duck rgb.png, or use an image of your own.

Note that this function can take a long time to run. One reason is that function calls
take a long time to execute in Matlab. We will assign one point of extra credit if you
can get your transform image rgb to be at least twice as fast as our implementation.

4 Anti-aliasing

(a) (b)

Figure 5: Example of aliasing. (a) Original image and (b) downsampled image with aliasing
artifacts.

There is a problem with our interpolation method above: it is not very good at shrink-
ing images, due to aliasing. For instance, if you try to downsample the image bricks rgb.png

by a factor of 0.4, you get the image shown on the left of Figure 5; notice the strange
banding effects in this image. This issue is called aliasing. The problem is that a
single pixel in the output image corresponds to about 2.8 pixels in the input image,
but we are sampling the value of a single pixel—we should really be averaging over
a small area. Fixing this issue is called anti-aliasing—to overcome the problem, we
will create a data structure that will let us (approximately) average over any possible
square regions of pixels in the input image: an image stack. An image stack is a 3D
matrix that you can think of as, not surprisingly, a stack of images, one on top of the
other. The top image in the cube will be the original input image. Images further
down the stack will be the input image with progressively larger amounts of blur
(i.e., pixels further down the stack average over a larger and larger area of the input
image). The size of the matrix will be rows × cols × num levels, where the original
(grayscale) image has size rows× cols and there are num levels images in the stack.
Figure 6 shows a few images from an example stack.

Before we use the stack, we must write a function to create it. You will first write
a function create image stack, which takes as input a (grayscale) image in double

5

(a) Level 1 (b) Level 5 (c) Level 20

Figure 6: Three slices from an image stack.

format and a number of levels in the stack, and returns a 3D matrix stack corre-
sponding to the stack. (Note that this is a different type of stacks than the stack from
A3.) Again, the first image on the stack, i.e. stack(:,:,1) will be the original image.
Every other image in the stack will be a blurred version of the previous image. You
may use the conv2 Matlab function to do the blurring. One possible blur kernel to use
is:

K =
1

9
·

 1 1 1
1 1 1
1 1 1


(If you come up with a better one, please let us know.) Now, for image k in the stack,
we know that every pixel is a (weighted) average of some number of pixels (a k × k
patch, roughly speaking) in the input image. Thus, if we downsample the image by a
factor of k, we want to sample pixels from level k of the stack.

=⇒ Write a function create image stack that takes a grayscale image and a number
max levels, and returns an image stack.

Now, what happens if downsample the image by a fractional factor, such as 3.6? Un-
fortunately, there is no level 3.6 of the stack. Fortunately, we have a tool to solve
this problem: interpolation. We now potentially need to sample a value at posi-
tion (row, col, k) of the image stack, where all three coordinates are fractional. We
therefore something more powerful than bilinear interpolation: trilinear interpola-
tion! Each position we want to sample now has eight neighbors, and we’ll combine all
of their values together in a weighted sum. This sounds complicated, but we can write
this in terms of our existing functions. In particular, we now interpolate separately
along different dimensions: trilinear interpolation can be implemented with two calls
to bilerp and one call to lerp.

=⇒ Write a function trilerp that takes an image stack, and a row, column, and
stack level k, and returns the interpolated value.

Now we can finally write a transformation function that does proper anti-aliasing. In
order to do this, create a function image transform aa. This function will be almost
identical to image transform aa, except for three main changes. The first change is to
compute the image stack. The second change is to compute, for the transformation
T , how much T is scaling down the image. If T is defined by the four values a, b, c, d

6

above, then, to a first approximation, the downscale factor is:

k =
2√

a2 + b2 +
√
c2 + d2

However, if k < 1 (corresponding to scaling up the image), we still want to sample
from level 1. This situation reverts to normal bilinear interpolation.

The final change we need to make is to call the trilerp function on the image stack,
instead of bilerp on the input image.

=⇒ Create transform image aa. You should also create a corresponding function
transform image rgb aa.

=⇒ Finally, create a function demo transform aa which shows the results of down-
sampling an image using bilinear versus trilinear interpolation. You may use an
image we provide, or any other image of your choice, as long as it demonstrates the
difference in an obvious way.

5 What to turn in

To recap, you will write and demo the following functions for Assignment 5, Part 1:

1. lerp (Section 2)
2. bilerp (Section 2)

3. transform image (Section 3)
4. transform image rgb (Section 3)
5. demo transform (Section 3)

6. create image stack (Section 4)
7. trilerp (Section 4)
8. transform image aa (Section 4)
9. transform image rgb aa (Section 4)

10. demo transform aa (Section 4)

7

