
  

Data Structures – Stacks and Queus 

Prof. Noah Snavely 

CS1114 
http://www.cs.cornell.edu/courses/cs1114 

Administrivia 

 

 Assignment 2, Part 2, due tomorrow 

– Please sign up for a Friday slot 

 Assignment 3 will be out Friday 

 

 Prelim 1!  Next Thursday, 3/1, in class 

– There will be a review session Wednesday 
evening, 7pm, Upson 315 
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Finding blobs 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
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Finding blobs 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Blobs are connected components! 
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Finding components 

 

1. Pick a 1 to start with, where you don’t 
know which component it is in 

– When there aren’t any, you’re done 

2. Give it a new component color 

3. Assign the same component color to each 
pixel that is part of the same component 

– Basic strategy: color any neighboring 1’s, 
have them color their neighbors, and so on 
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 For each vertex we visit, we color its 
neighbors and remember that we need to 
visit them at some point 

– Need to keep track of the vertices we still need 
to visit in a todo list 

– After we visit a vertex, we’ll pick one of the 
vertices in the todo list to visit next 

 

 This is also called graph traversal 

From Section 



Stacks and queues 

 Two ways of representing a “todo list” 

 

 Stack: Last In First Out (LIFO) 

– (Think cafeteria trays) 

– The newest task is the one you’ll do next 

 

 Queue: First In First Out (FIFO) 

– (Think a line of people at the cafeteria) 

– The oldest task is the one you’ll do next 
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Stacks 

 Two operations: 

 

 Push: add something to the 
top of the stack 

 

 Pop: remove the thing on 
top of the stack 
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Queue 

 Two operations: 

 Enqueue: add something to the end of 
the queue 

 Dequeue: remove something from the 
front of the queue 
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Graph traversal 
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Depth-first search (DFS) 

 Call the starting node the root 

 We traverse paths all the way until we get 
to a dead-end, then backtrack (until we 
find an unexplored path) 

 Corresponds to using a stack 
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Another strategy 
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1. Explore all the cities that are one hop 
away from the root 

2. Explore all cities that are two hops away 
from the root 

3. Explore all cities that are three hops 
away from the root 

  … 

 

 This corresponds to using a queue 

 

 



Breadth-first search (BFS) 

 

 We visit all the vertices at the same level 
(same distance to the root) before moving 
on to the next level 
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BFS vs. DFS 
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Breadth-first (queue) Depth-first (stack) 



Basic algorithms 

BREADTH-FIRST SEARCH (Graph G) 

 While there is an uncolored node r 

– Choose a new color 

– Create an empty queue Q 

– Let r be the root node, color it, and add it to Q 

– While Q is not empty 

• Dequeue a node v from Q 

• For each of v’s neighbors u 

 If u is not colored, color it and add it to Q 
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Basic algorithms 

DEPTH-FIRST SEARCH (Graph G) 

 While there is an uncolored node r 

– Choose a new color 

– Create an empty stack S 

– Let r be the root node, color it, and push it on S 

– While S is not empty 

• Pop a node v from S 

• For each of v’s neighbors u 

 If u is not colored, color it and push it onto S 
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Queues and Stacks 

 Examples of Abstract Data Types (ADTs) 

 ADTs fulfill a contract: 

– The contract tells you what the ADT can do, 
and what the behavior is 

– For instance, with a stack: 

• We can push and pop 

• If we push X onto S and then pop S, we get 
back X, and S is as before 

 

 Doesn’t tell you how it fulfills the contract 
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Implementing DFS 

 

 How can we implement a stack? 

– Needs to support several operations: 

– Push (add an element to the top) 

– Pop (remove the element from the top) 

– IsEmpty 
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256 

42 
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Implementing a stack 

 IsEmpty 

 

 

 Push (add an element to the top) 

 

 

 Pop (remove an element from the top) 
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Implementing BFS 

 How can we implement a queue? 

– Needs to support several operations: 

– Enqueue (add an element to back) 

– Dequeue (remove an element from front) 

– IsEmpty 

 

 Not quite as easy as a stack… 
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256 

42 
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Efficiency 

 Ideally, all of the operations (push, 
pop, enqueue, dequeue, IsEmpty) 
run in constant (O(1)) time 

 

 To figure out running time, we 
need a model of how the 
computer’s memory works 
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Computers and arrays 

 Computer memory is a large array  

– We will call it M 

 In constant time, a computer can: 

– Read any element of M (random access) 

– Change any element of M to another element 

– Perform any simple arithmetic operation 

 This is more or less what the hardware 
manual for an x86 describes 

 



Computers and arrays 

 Arrays in Matlab are consecutive 
subsequences of M 

 

 

23 

M … 
A = zeros(8) 

Memory manipulation 

 How long does it take to: 

 

– Read A(8)? 

 

– Set A(7) = A(8)? 

 

– Copy all the elements of an array (of size n) A 
to a new part of M? 

 

– Shift all the elements of A one cell to the left? 
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Implementing a queue: Take 1 

 First approach: use an array 

 Add (enqueue) new elements to the end 
of the array  

 When removing an element (dequeue), 
shift the entire array left one unit 
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Q = []; 

Implementing a queue: Take 1 

 IsEmpty 

 

 

 Enqueue (add an element) 

 

 

 Dequeue (remove an element) 
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What is the running time? 

 IsEmpty 

 

 

 Enqueue (add an element) 

 

 

 Dequeue (remove an element) 
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Implementing a queue: Take 2 

 Second approach: use an array AND 

 Keep two pointers for the front and back 
of the queue 

 

 

 Add new elements to the back of the array  

 Take old elements off the front of the 
array 
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Q = zeros(1000000); 

front = 1; back = 1; 

front back 



Implementing a queue: Take 2 

 IsEmpty 

 

 

 Enqueue (add an element) 

 

 

 Dequeue (remove an element) 
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What is the running time? 

 IsEmpty 

 

 

 Enqueue (add an element) 

 

 

 Dequeue (remove an element) 
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Implementing a queue: Take 2 

 What problems can occur? 
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Questions? 
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Linked lists 

 Alternative to an array 

 

 

 Every element (cell) has two parts: 

1. A value (as in an array) 

2. A link to the next cell 
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Linked lists 

8 4 1 3 

Values 

Links 



35 

Linked lists as memory arrays 

 We’ll implement linked lists using M 

 

 A cell will be represented by a pair of 
adjacent array entries 

M … 
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A few details 

 I will draw odd numbered entries in blue 
and even ones in red 

– Odd entries are values 

• Number interpreted as list elements 

– Even ones are links 

• Number interpreted as index of the next cell 

• AKA location, address, or pointer 

 The first cell is M(1) and M(2) (for now) 

 The last cell has 0, i.e. pointer to M(0) 

– Also called a “null pointer” 
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Example 

8 4 1 3 

8 5 1 

1 2 3 

7 4 3 

4 5 6 

3 0 X 

7 8 9 

8 3 4 

1 2 3 

5 1 7 

4 5 6 

3 0 X 

7 8 9 
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Traversing a linked list 

 Start at the first cell, [M(1),M(2)] 

 Access the first value, M(1) 

 The next cell is at location c = M(2) 

 If c = 0, we’re done 

 Otherwise, access the next value, M(c) 

 The next cell is at location c = M(c+1) 

 Keep going until c = 0 



Inserting an element – arrays 

 How can we insert an element x into an 
array A? 

 Depends where it needs to go: 

– End of the array: 

A = [A x]; 

 

– Middle of the array (say, between elements 
A(5) and A(6))? 

 

– Beginning of the array? 
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Inserting an element – linked lists 

 Create a new cell and splice it into the list 

 

 

 

 Splicing depends on where the cell goes: 

– How do we insert: 

• At the end? 

• In the middle? 

• At the beginning? 

8 4 1 3 

5 
M(1) 
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Adding a header 

 We can represent the linked list just by 
the initial cell, but this is problematic 

– Problem with inserting at the beginning 

 

 Instead, we add a header – a few entries 
that are not cells, but hold information 
about the list 

1. A pointer to the first element 

2. A count of the number of elements 

Questions? 
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