
CS1114: Study Guide 3

This document covers the topics we’ve covered in the final part of the course. Please refer
to the class slides for more details.

1 Markov chains

Sequences of things come up all the time when dealing with the real world. The closing stock
price of Google each day, the average temperature each day in Ithaca, the words in James
Joyce’s Ulysses, and the nucleotides that make up our DNA are all examples of sequences. One
simple way to model and predict sequences is with Markov chains. A Markov chain is a model
of sequences that makes the assumption that the next item in a sequence is only dependent on
a small number of items that come before it (often just one—known as a first-order Markov
chain). This is known as the Markov assumption.

A Markov chain can be represented in several ways. In class we only considered discrete
Markov chains—chains that describe sequences made up of a finite number of symbols or
states (e.g., English words or DNA; the average temperature in Ithaca, on the other hand,
is a continuous quantity, as it can take on any real number). We can represent a discrete
first-order Markov chain as simple a table or matrix giving the probabilities of transitioning
from each state to every other state. One simple example we saw in class was a Markov chain
describing the weather in Ithaca during springtime, assuming that there were three possible
weather conditions: nice (N), snowy (S), and rainy (R). Here is a transition matrix (consisting
of (mostly) made-up numbers) describing such a chain:

N S R

N 0.0 0.75 0.25

S 0.25 0.25 0.5

R 0.25 0.5 0.25

In a transition matrix, the rows correspond to the previous state, which we will call xt−1,
and the columns correspond to the current state, which we will call xt. Thus, according to
this Markov chain T , if it was nice yesterday, the probability that it will be snowy today is
TN,S = 0.75, or 75%. Note that each row of a transition must add up to one (so that each row
is a valid probability distribution), though each column may or may not add up to one.

Another way to visualize a Markov chain is as a graph on the set of states, where each edge
(u, v) is weighted with the probability of transitioning from state xt−1 = i to state xt = v.
The graph corresponding to the Markov chain above is:
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Note that this graph has self-loops, or vertices that point to themselves. We’ve left off the
edges with 0 probability (in this case, only the edge from state N to itself.

If we know what happened yesterday, a Markov chain gives us the probabilities of being
each state today. We can also use a Markov chain to predict what will happen further into the
future. For instance, if it was nice yesterday, we can compute the probability that it will be
nice tomorrow (i.e., after two transitions) by simply computing the probability of all possible
ways it could be nice again two days after being nice, and adding the probabilities together.
The possible ways are N → N → N , N → S → N , and N → R → N . The probability of
N → N → N is 0.0 · 0.0 = 0.0, the probability of N → S → N is 0.75 · 0.25 = 0.1875, and
the probability of N → R → N is 0.25 · 0.25 = 0.065, so the probability of having a nice day
two days after a nice day is 0.0 + 0.1875 + 0.065 = 0.25 or 25%.

Note that this sum of products is simply the dot product of the row xt−1 = N with the
column xt = N. In fact, we can compute a matrix giving the probabilities of states at time
xt+1 given the state at xt−1 by simply multiplying T times itself:

T 2 =

 0.0 0.75 0.25
0.25 0.25 0.5
0.25 0.5 0.25

 0.0 0.75 0.25
0.25 0.25 0.5
0.25 0.5 0.25

 =

 0.2500 0.3125 0.4375
0.1875 0.5000 0.3125
0.1875 0.4375 0.3750


So, for instance, if it was snowy yesterday, the probability that it will be snowy tomorrow

is T 2
S,S = 0.5, or 50%. A matrix predicting the state at time t + k can be computed by taking

T to the k + 1th power: T k+1.
How do we create the probabilities for a Markov chain. We usually compute these based

on a large sequence of existing data. For instance, if we had ten years worth of weather data
for Ithaca, we could use this data to compute the transition probabilities for a Markov chain.
In class, we looked at applying this technique to text: given a work (or set of works) by an
author, we analyzed the text to compute a transition matrix describing the sequence of words
used by that author. Here’s a very simple example of a transition matrix created from the
text

“A dog is a mans best friend. Its a dog eat dog world out there.”
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In this case, we’ve chosen to represent a period (‘.’) as its own word (though we could
choose to ignore punctuation entirely). According to this transition matrix, the probability
of generating the string

“dog eat dog eat dog eat dog”

(assuming we generate a 7 word string starting with “dog”) is the product of the transition
probabilities

dog → eat → dog → eat → dog

or
1

3
· 1 · 1

3
· 1 · 1

3
=

1

27
.

The probability of generating the string

“dog is a dog eat world,”

on the other hand, is zero, because the probability of a transition eat → world is zero. In
Assignment 6, you dealt with the problem of zero probability strings, and with the prob-
lem of determining authorship of disputed texts—given a large database of text with known
authorship.

2 Clustering

Suppose, however that we are given the following, harder problem: someone gives us a bunch
of texts whose authors are completely unknown (there was a mixup at the library, say), and
asks us to categories the texts into groups all written by the same author. All we know is
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that texts written by the same author are likely to have similar statistics, and texts written
by different authors are likely to have different statistics. We may or may not even know how
many authors there were. This is an example of a clustering problem—we want to cluster
the texts into groups such that the texts in the same group are similar, and texts in different
groups are different.

Clustering problems are widespread in many different domains. Businesses often want to
cluster our customers into different groups in order to better tailor their marketing to specific
types of people (market segmentation). News aggregation websites like Google Maps cluster
news stories from different sources into groups of stories that are all on the same basic topic.
And clustering can be use to find epicenters of disease outbreak (such as the recent swine flu
epidemic).

In our case, we will state the clustering problem as follows: we are given a set of n
data points x1, x2, . . . , xn (represented by vectors of some dimension), and a way to compute
distances between these points (for instance, the typical Euclidean distance between vectors).
An example clustering of 2D points (with four clusters) is shown below:

How do we define the clustering problem? We want to create a set of clusters and assign
each point to a single cluster so as to minimize some underlying cost function that rates the
“goodness” of a clustering. What should this cost function look like? Intuitively, we want
a cost function that prefers clusterings where similar points are close together, and where
dissimilar points are far away. One of the simplest approaches is known as k-means.

2.1 k-means

The k-means clustering problem is as follows: we are given the number of clusters k we should
compute (e.g., k = 4). We need to find (a) a set of cluster centers x̄1, x̄2, . . . , x̄k, and (b) an
assignment of each point xi to a cluster Cj, so as to minimize the sum of squared distances
between points and their assigned cluster center. That is, we want to find the cluster centers
and cluster assignments that minimize the following objective function:

cost(x̄1, ..., x̄k, C1, . . . , Ck) =
k∑

j=1

∑
xi∈Cj

|xi − x̄j|2
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At first, this problem looks like the kind of least squares problems we’ve seen in the past
(such as line fitting), and which we know are easy to solve. Unfortunately, however, there’s a
critical difference: we need to find the cluster centers and the cluster assignments at the same
time, and this makes the problem much more difficult. If we knew either of the two then the
problem would be easy: given the cluster centers, the optimal assignment is to assign each
data point to the closest cluster center; given the cluster assignment, the optimal centers are
the means of each cluster. But we need to compute both.

This small difference means that, far from being easy to solve, the k-means problem is in
a class of problems that are extremely difficult. No known algorithm exists for computing the
optimal k-means in less than exponential time in n (essentially, we have to try every possible
clustering to find the one, and there are O(kn) possible clusterings). Compared to polynomial
time algorithms for other problems we have seen—sorting (O(n2)), median finding (O(n)),
convex hull (O(n2)), exponential time algorithms are much worse (it is similar to comparing
snail sort to quicksort). The class of hard problems of which k-means is a member is known
as NP -hard problems (NP stands for non-deterministic polynomial time, though you won’t
learn why until much later).

Should we just give up? No, we can still hope to create a fast algorithm that’s pretty
good (for instance, one that always gets an answer that is pretty close to the optimal one).
In section you will learn about one approach called Lloyd’s algorithm, which iterates between
computing cluster centers and cluster assignments. Here, we will discuss another approach:
the greedy algorithm.

2.2 Greedy algorithms

A greedy algorithm is one that always does whatever seems best at any given moment, without
a long term plan. For some problems greedy algorithms are optimal—i.e., they give the best
possible answer—while for other problems, they can give answers that are quite bad. An
example problem where a greedy algorithm work well is making change with US currency
with the smallest possible number of coins. If all I can give back are quarters, dimes, nickels,
and pennies, then a greedy algorithm would give back quarters until the remaining change
is less than $0.25, then give back dimes until the remaining change is less than $0.10, then
repeats for nickels and pennies. This simple algorithm always gives back the smallest possible
number of coins. (Unfortunately, as we saw in class, this algorithm doesn’t work so well for
more unusually currency; imagine how you would give back 98 cents if all you had were 50
cent pieces, 49 cent pieces, and 1 cent pieces.)

We can apply this idea to the k-means problem as follows:

Algorithm KMeansGreedy(x1, x2, . . . , xn, k)

1. Select one of the data points at random, and call it the first center.

2. Select the data point furthest from the first one, and call that the second cluster center.

3. Repeat by finding the data point furthest from all of the centers selected so far (i.e., the
point for which the closest center is as far away as possible), and adding the point to
the set.

4. Stop when we have selected k points.
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5. Associate each data point with its closest cluster center.

For instance, if we ran this algorithm on the 2D point set below, we might end up selecting
the blue points as our cluster centers (in the order indicated by the numbers):

How well does KMeansGreedy work? Unfortunately, not well at all. The cost of the
resulting cluster centers and cluster assignments can be much worse than the cost of the
optimal clustering. However, if we tweak the problem slightly, the same greedy algorithm
works much better.

2.3 k-centers

The k-centers problem is a variation on k-means, sometimes used in facility location. We’re
looking for exactly the same output (a set of cluster centers and a cluster assignment), but
instead of minimizing the sum of squared errors, we want to minimize the maximum distance
from a point to its cluster center. One way to think about this problem is that we’re planning
to build k hospitals in a city with n houses, and we want to place the hospitals so that the
furthest distance from a house to the closest hospital is as small as possible (we want our
ambulances to get to any house in as short a time as possible). We can write this objective
function as follows:

cost(x̄1, ..., x̄k, C1, . . . , Ck) =
k

max
j=1

max
xi∈Cj

|xi − x̄j|2

(the square at the end is optional in this case).
Unfortunately, the k-center problem is also NP -hard. But what happens when we apply

KMeansGreedy to the k-center problem? Amazingly, we will always get a clustering whose
cost is no more than two times worse than the optimal. The proof of this fact is beyond the
scope of this course, but it suggests something very interesting: we can’t easily compute the
optimal answer, but we can compare the cost of the “greedy” answer to the cost of the optimal
answer.
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2.4 Minimum spanning trees

Soon, we will look at yet another objective function for clustering that is much easier to
optimize, but first, we will take a slight detour into graphs. First, we define a new type of
graph called a weighted graph, in which each edge has a number associated with it (similar to
the Markov chain graph above). Intuitively, this edge expresses some kind of distance between
the two endpoints (for clustering, we will make this weight the actual distance between two
input points, represented by nodes). For instance, below we have a simplified graph of the
European rail system, in which each edge is weighted with the distance (in miles) between the
two cities it connects:

We define the cost of a graph as the total sum of edge weights in the graph. The cost of
the graph above is 2600 miles.

Next, recall that a tree is a graph that is connected and has no cycles, such as the graph
below:

A spanning tree is a subgraph of a (connected) graph that has two properties:

1. It connects all the vertices in the original graph.

2. It is a tree.

(Note that a subgraph is exactly what it sounds like—a graph that has a subset of the vertices
and edges of another graph.)

The graph above has several spanning trees, including the two below:
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Note that a spanning tree for a (connected) graph with n vertices always has n vertices and
n− 1 edges.

A fundamental problem in computer science is the minimum spanning tree (MST) problem:
the problem of finding the spanning tree with minimum cost. As illustrated above, different
spanning trees have different costs. One way to think about this problem (in the context of
the graph above) is that we want to connect all of the cities represented in the graph (i.e., it
should be possible to reach any city from any other city), but we want to lay as few miles of
track as possible. The MST tells us how to do this.

We can try to compute the MST with the following greedy algorithm:

Algorithm MSTGreedy(x1, x2, . . . , xn, k)
1. Start with a graph with all the vertices but no edges.

2. Sort all of the edges by increasing weight.

3. For each edge in order, add it to the graph, unless it connects two nodes that are already
in the same connected component.

This algorithm is known as Kruskal’s algorithm. One nice fact is that it always results in
a spanning tree. One even nicer fact is that it always gives us the minimum spanning tree.
Again, the proof of this is beyond the scope of this class.

The graphs show the result of running Kruskal’s algorithm on the rail network above. To
see Kruskal’s algorithm in action, please see the slides for Lecture 24.
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The cost of the MST shown above is 1750. Thus, at minimum, we have to lay 1750 miles
of track to connect all the cities together (though in practice, we would probably want to lay
more).

2.5 Maximum spacing clustering

How can we use the minimum spanning tree for clustering? Let’s consider another objective
function for clustering: maximizing spacing. We define the spacing of a set of clusters as the
distance between the closest pair of points in different clusters. For a good clustering, we
would expect the spacing to be large; hence, maximizing the spacing seems like a reasonable
objective function for clustering. Amazingly, we just talked above an algorithm that computes
clustering with maximum spacing.

First, note that the MST algorithm, after adding m edges, results in a graph with n−m
connected components (we start with each vertex in its own connected component, and each
time we add an edge, we connect two previously disconnected components, reducing the count
by one). We can consider these connected components as our clusters; after adding m edges,
we have n−m clusters. Thus, to get k clusters, we just need to stop the MST construction with
Kruskal’s algorithm k − 1 edges early. As it turns out, these clusters will have the maximum
spacing (the proof of this fact is in the slides, but won’t be necessary to know for the exam).
Another way to say this is that to find the clustering with the maximum spacing, we can find
the MST using Kruskal’s algorithm, then remove the last k − 1 edges we added. The spacing
for this clustering is the weight of the next edge we would add to the MST, by definition—
Kruskal’s algorithm always adds the shortest edge that connects two different components (or
clusters). For instance, the two clusters with the maximum spacing for the rail network above
is shown below, and the spacing is 400 (the weight of the next edge we would add to connect
these components, i.e. Rome to Berlin (or Rome to Paris)). The two clusters correspond to
the two connected components of the graph (Italy vs. the rest of Europe).

The MST is a fairly simple problem, therefore finding the clustering with the maximum
spacing is also easy (much easier than the k-means or k-center problems).
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2.6 Conclusion

To recap, here are some of the important facts covered in this section:

1. The k-means problem is very hard, and the greedy algorithm can perform very poorly.

2. The k-center problem is also very hard, but the greedy algorithm the guaranteed to give
us answer with cost no worse than twice the cost of the optimal solution.

3. Finding the k clusters with the maximum spacing is much easier, and can be solved by
running Kruskal’s algorithm for MST, stopping k − 1 edges early.
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