(CS1114: Notes on big-O notation
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(a) An O(1) function (b) An O(n) function

Figure 1: With big-O notation, what matters is how the amount of work grows for “large”
n

In class we went over the running time of several different algorithms on different inputs.
This document explains how the running time (in terms of big-O notation) of each can be
arrived at. The two algorithms we will consider are the “repeated find biggest” algorithm,
which repeatedly finds and removes the largest element of the array until the desired element
is found, and the quickselect algorithm, described in class. For each problem we assume that
the input is an array of length n. Remember that:

e When expressed in terms of big-O notation, the constant of proportionality doesn’t
matter. For instance, 1000n? and 0.001n? are both O(n?).

e We only care about the growth in the amount of work for “large” input sizes n. If a
amount of work starts growing linearly for small n, but eventually “flattens out” to a
constant amount of work as n grows, then the amount of work is O(1) (constant). See
Figure 1.

1. What is the running time of finding the median using “repeated find biggest”?

Answer: O(n?). The first time we remove the biggest, we examine all n elements of the
array. The next time, we look at n — 1, and so on, until we have removed 50% (0.5n)
of the elements (during the last iteration, we examine the remaining 0.5n elements).
Let T'(n) be the total number of elements examined. Then T'(n) is:

Tn)=n+n—1+n—-24+...+0.5n



Each of these terms is at least 0.5n, and there are 0.5n terms, so we can say that
T(n) > (0.5n)(0.5n) = 0.25n*

(We can also work the sum out exactly—the result is still an expression proportional
to n?.) Thus, T'(n) grows in proportion to n?, so T'(n) = O(n?). Since the number of
elements we examine is O(n?), the algorithm takes O(n?) time to run.

. What is the running time of finding the median using quickselect?

Answer: O(n) (expected). Quickselect can find an element with any rank in expected
linear time (including the median). (The worst case running time is O(n?), however.)
. What is the running time of finding the 2nd-largest element using “repeated
find biggest”? How about the 3rd-largest element?

Answer: O(n). The first time we remove the biggest element, we examine n elements.
The second time, we examine n — 1 elements. Thus, the total number of elements
examined is 2n — 1. The amount of work done is thus proportion to n, so for finding the
2nd largest element, “repeated find biggest” runs in O(n) time. Similarly, the number
of elements examined when finding the 3rd-largest element isn+n—14+n—2 = 3n—3,
which is also O(n).

. What is the running time of finding the 50,000th-largest element using
“repeated find biggest”?
Answer: Still O(n)! The number of elements examined is now:
n+n—1+n-2+...+n—50000
which is equal to
50000 — (1 + 2+ 3+ ...50000)
i.e., 50000n minus a large constant. This is still proportional to n, though with a very

large constant. Thus, this approach runs in O(n) time.

. What is the running time of finding the 2nd-largest element using quickse-
lect?

Answer: O(n) expected. See question 2.

. What is the running time of finding the element larger than all but 5%
using “repeated find biggest”?

Answer: O(n?). To see why, let’s count the number of elements we examine. We will
continue to remove the biggest element until we have removed 5% of the elements (and
have 95% remaining). Thus, the total number of elements examined is:

n+n—14+n—-—24+...4+0.95n



There are 0.05n elements in this summation, and all of them are at least as big as
0.95n. Thus, the total number of elements examined is at least:

(0.951)(0.05n) = 0.0475n?

which is proportional to n?. Thus, the running time is O(n?).

. What is the running time of finding the biggest element just in the first
50,000 elements of the array?

Answer: O(1) (constant time)! The reason is that, for arrays larger than size n =
50,000, we only need to examine the first 50,000 elements. In other words, we only
examine 50,000 elements total no matter how large the array is. Thus, we can do this
in constant time.



