Breadth-first and depth-first traversal

Prof. Noah Snavely CS1114

http://cs1114.cs.cornell.edu

Administrivia

- Assignment 2, Part 2, due Friday
 - Please sign up for a Friday slot
- Assignment 3 will be out Friday

- Survey:
 - Should we move lecture closer to the lab?
- Prelim 1! Next Thursday, 2/26, in class
 - There will be a review session TBA

Final notes on Big-O Notation

- If algorithm A is O(n²) and algorithm B is O(n), we know that:
 - For large n, A will eventually run much slower than B
 - For small n, we know very little:
 - A could be slower
 - B could be slower
 - They could have similar runtimes
 - Or difference could be very large

Final notes on Big-O Notation

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	7	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Blobs are connected components!

Finding components

- 1. Pick a 1 to start with, where you don't know which component it is in
 - When there aren't any, you're done
- 2. Give it a new component color
- 3. Assign the same component color to each pixel that is part of the same component
 - Basic strategy: color any neighboring 1's, have them color their neighbors, and so on

Finding components

- For each vertex we visit, we color its neighbors and remember that we need to visit them at some point
 - Need to keep track of the vertices we still need to visit in a todo list
 - After we visit a vertex, we'll pick one of the vertices in the todo list to visit next

This is also called graph traversal

Stacks and queues

- Two ways of representing a "todo list"
- Stack: Last In First Out (LIFO)
 - (Think cafeteria trays)
 - The newest task is the one you'll do next
- Queue: First In First Out (FIFO)
 - (Think a line of people at the cafeteria)
 - The oldest task is the one you'll do next

Stacks

Two operations:

Push: add something to the top of the stack

Pop: remove the thing on top of the stack

Queue

- Two operations:
- Enqueue: add something to the end of the queue
- Dequeue: remove something from the front of the queue

Graph traversal

- Suppose you're in a maze
- What strategy can you use to find the exit?

Graph traversal

Current node: London

Todo list: []

Current node: London

Todo list: [Paris]

Current node: Paris

Todo list: []

Current node: Paris

Todo list: [Frankfurt, Berlin, Rome]

Current node: Rome

Todo list: [Frankfurt, Berlin]

Current node: Rome

Todo list: [Frankfurt, Berlin, Naples]

Current node: Naples

Todo list: [Frankfurt, Berlin]

Current node: Berlin

Todo list: [Frankfurt]

Current node: Berlin

Todo list: [Frankfurt, Hamburg, Vienna]

Current node: Vienna

Todo list: [Frankfurt, Hamburg]

Current node: Vienna

Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Current node: Vienna

Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Current node: Warsaw

Todo list: [Frankfurt, Hamburg, Prague]

Current node: Prague

Todo list: [Frankfurt, Hamburg]

Current node: Hamburg

Todo list: [Frankfurt]

Current node: Frankfurt

Todo list: []

Depth-first search (DFS)

- Call the starting node the root
- We traverse paths all the way until we get to a dead-end, then backtrack (until we find an unexplored path)

Another strategy

- 1. Explore all the cities that are one hop away from the root
- Explore all cities that are two hops away from the root
- 3. Explore all cities that are three hops away from the root

. . .

This corresponds to using a queue

Current node: London

Todo list: []

Current node: London

Todo list: [Paris]

Current node: Paris

Todo list: []

Current node: Paris

Todo list: [Frankfurt, Berlin, Rome]

Current node: Frankfurt

Todo list: [Berlin, Rome]

Current node: Frankfurt

Todo list: [Berlin, Rome, Hamburg]

Current node: Berlin

Todo list: [Rome, Hamburg]

Current node: Berlin

Todo list: [Rome, Hamburg, Vienna]

Current node: Rome

Todo list: [Hamburg, Vienna]

Current node: Rome

Todo list: [Hamburg, Vienna, Naples]

Current node: Hamburg

Todo list: [Vienna, Naples]

Current node: Vienna

Todo list: [Naples]

Current node: Vienna

Todo list: [Naples, Prague, Warsaw]

Current node: Naples

Todo list: [Prague, Warsaw]

Current node: Prague

Todo list: [Warsaw]

Current node: Warsaw

Todo list: []

Breadth-first search (BFS)

 We visit all the vertices at the same level (same distance to the root) before moving on to the next level

BFS vs. DFS

Breadth-first (queue) Depth-first (stack)

BFS vs. DFS

(tree = graph with no cycles)

Basic algorithms

BREADTH-FIRST SEARCH (Graph G)

- While there is an uncolored node r
 - Choose a new color
 - Create an empty queue Q
 - Let r be the root node, color it, and add it to Q
 - While Q is not empty
 - Dequeue a node v from Q
 - For each of v's neighbors u
 - If u is not colored, color it and add it to Q

Basic algorithms

DEPTH-FIRST SEARCH (Graph G)

- While there is an uncolored node r
 - Choose a new color
 - Create an empty stack S
 - Let r be the root node, color it, and push it on S
 - While **S** is not empty
 - Pop a node v from S
 - For each of v's neighbors u
 - If u is not colored, color it and push it onto S

Queues and Stacks

- Examples of Abstract Data Types (ADTs)
- ADTs fulfill a contract:
 - The contract tells you what the ADT can do, and what the behavior is
 - For instance, with a stack:
 - We can push and pop
 - If we push X onto S and then pop S, we get back X, and S is as before
- Doesn't tell you how it fulfills the contract

Implementing DFS

- How can we implement a stack?
 - Needs to support several operations:
 - Push (add an element to the top)
 - Pop (remove the element from the top)
 - IsEmpty

Implementing a stack

IsEmpty

```
function e = IsEmpty(S)
e = (length(S) == 0);
```

Push (add an element to the top)

```
function S = push(S, x)
S = [S x]
```

Pop (remove an element from the top)

```
function [S, x] = pop(S)

n = length(S); x = S(n); S = S(1:n-1);

% but what happens if n = 0?
```

Implementing BFS

- How can we implement a queue?
 - Needs to support several operations:
 - Enqueue (add an element to back)
 - Dequeue (remove an element from front)
 - IsEmpty

Not quite as easy as a stack...

Efficiency

 Ideally, all of the operations (push, pop, enqueue, dequeue, IsEmpty) run in constant (O(1)) time

 To figure out running time, we need a model of how the computer's memory works

Computers and arrays

- Computer memory is a large array
 - We will call it M
- In constant time, a computer can:
 - Read any element of M (random access)
 - Change any element of M to another element
 - Perform any simple arithmetic operation
- This is more or less what the hardware manual for an x86 describes

Computers and arrays

 Arrays in Matlab are consecutive subsequences of M

Memory manipulation

- How long does it take to:
 - Read A(8)?
 - Set A(7) = A(8)?
 - Copy all the elements of an array (of size n) A to a new part of M?
 - Shift all the elements of A one cell to the left?

Implementing a queue: Take 1

- First approach: use an array
- Add (enqueue) new elements to the end of the array
- When removing an element (dequeue), shift the entire array left one unit

```
Q = [];
```

Implementing a queue: Take 1

IsEmpty

```
function e = IsEmpty(Q)
e = (length(S) == 0);
```

Enqueue (add an element)

```
function Q = \text{enqueue}(Q, x)

Q = [Q x];
```

Dequeue (remove an element)

```
function [Q, x] = dequeue(Q)

n = length(Q); x = Q(1);

for i = 1:n-1

Q(i) = Q(i+1); % everyone steps forward one step
```

What is the running time?

IsEmpty

Enqueue (add an element)

Dequeue (remove an element)

Implementing a queue: Take 2

- Second approach: use an array AND
- Keep two pointers for the front and back of the queue

- Add new elements to the back of the array
- Take old elements off the front of the array

```
Q = zeros(1000000);
front = 1; back = 1;
```

Implementing a queue: Take 2

IsEmpty

Enqueue (add an element)

Dequeue (remove an element)