
Breadth-first and depth-first
traversal

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu

Administrivia
Assignment 2, Part 2, due Friday
– Please sign up for a Friday slot

Assignment 3 will be out Friday

Survey:
– Should we move lecture closer to the lab?

Prelim 1! Next Thursday, 2/26, in class
– There will be a review session TBA

2

Final notes on Big-O Notation
If algorithm A is O(n2) and algorithm B is
O(n), we know that:

– For large n, A will eventually run much slower
than B

– For small n, we know very little:
• A could be slower
• B could be slower
• They could have similar runtimes
• Or difference could be very large

3

4

Final notes on Big-O Notation

A

B

B

A

5

Finding blobs
1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

6

Finding blobs
1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Blobs are connected components!

7

Finding components

1. Pick a 1 to start with, where you don’t
know which component it is in
– When there aren’t any, you’re done

2. Give it a new component color
3. Assign the same component color to each

pixel that is part of the same component
– Basic strategy: color any neighboring 1’s,

have them color their neighbors, and so on

8

For each vertex we visit, we color its
neighbors and remember that we need to
visit them at some point
– Need to keep track of the vertices we still need

to visit in a todo list
– After we visit a vertex, we’ll pick one of the

vertices in the todo list to visit next

This is also called graph traversal

Finding components

Stacks and queues
Two ways of representing a “todo list”

Stack: Last In First Out (LIFO)
– (Think cafeteria trays)
– The newest task is the one you’ll do next

Queue: First In First Out (FIFO)
– (Think a line of people at the cafeteria)
– The oldest task is the one you’ll do next

9

Stacks
Two operations:

Push: add something to the
top of the stack

Pop: remove the thing on
top of the stack

10

Queue

Two operations:
Enqueue: add something to the end of
the queue
Dequeue: remove something from the
front of the queue

11

Graph traversal

Suppose you’re in a
maze
What strategy can
you use to find the
exit?

12

Graph traversal

13

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Oslo Stockholm

14

Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Current node: London
Todo list: []

Graph traversal (stack)

Oslo Stockholm

15

Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: London
Todo list: [Paris]

Oslo Stockholm

16

2
Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: Paris
Todo list: []

Oslo Stockholm

17

2
Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: Paris
Todo list: [Frankfurt, Berlin, Rome]

Oslo Stockholm

18

2
Paris

Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: Rome
Todo list: [Frankfurt, Berlin]

Oslo Stockholm

19

2
Paris

Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: Rome
Todo list: [Frankfurt, Berlin, Naples]

Oslo Stockholm

20

2
Paris

Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Naples
Todo list: [Frankfurt, Berlin]

Oslo Stockholm

21

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Berlin
Todo list: [Frankfurt]

Oslo Stockholm

22

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Berlin
Todo list: [Frankfurt, Hamburg, Vienna]

Oslo Stockholm

23

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg]

Oslo Stockholm

24

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Oslo Stockholm

25

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Oslo Stockholm

26

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna Prague

4
Naples 7

Warsaw

Hamburg

Graph traversal (stack)

Current node: Warsaw
Todo list: [Frankfurt, Hamburg, Prague]

Oslo Stockholm

27

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna

8
Prague

4
Naples 7

Warsaw

Hamburg

Graph traversal (stack)

Current node: Prague
Todo list: [Frankfurt, Hamburg]

Oslo Stockholm

28

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna

8
Prague

4
Naples 7

Warsaw

9 Hamburg

Graph traversal (stack)

Current node: Hamburg
Todo list: [Frankfurt]

Oslo Stockholm

29

2
Paris

5
Berlin

1
London

3
Rome

10
Frankfurt

6
Vienna

8
Prague

4
Naples 7

Warsaw

9 Hamburg

Graph traversal (stack)

Current node: Frankfurt
Todo list: []

Oslo Stockholm

Depth-first search (DFS)

Call the starting node the root
We traverse paths all the way until we get
to a dead-end, then backtrack (until we
find an unexplored path)

30

2

5

1

3

10

6 8

4
7

9

Another strategy

31

1. Explore all the cities that are one hop
away from the root

2. Explore all cities that are two hops away
from the root

3. Explore all cities that are three hops
away from the root
…

This corresponds to using a queue

32

Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Current node: London
Todo list: []

Graph traversal (queue)

Oslo Stockholm

33

Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: London
Todo list: [Paris]

Oslo Stockholm

34

2
Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Paris
Todo list: []

Oslo Stockholm

35

2
Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Paris
Todo list: [Frankfurt, Berlin, Rome]

Oslo Stockholm

36

2
Paris

Berlin

1
London

Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Frankfurt
Todo list: [Berlin, Rome]

Oslo Stockholm

37

2
Paris

Berlin

1
London

Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Frankfurt
Todo list: [Berlin, Rome, Hamburg]

Oslo Stockholm

38

2
Paris

4
Berlin

1
London

Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Berlin
Todo list: [Rome, Hamburg]

Oslo Stockholm

39

2
Paris

4
Berlin

1
London

Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Berlin
Todo list: [Rome, Hamburg, Vienna]

Oslo Stockholm

40

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Rome
Todo list: [Hamburg, Vienna]

Oslo Stockholm

41

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Rome
Todo list: [Hamburg, Vienna, Naples]

Oslo Stockholm

42

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Hamburg
Todo list: [Vienna, Naples]

Oslo Stockholm

43

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna Prague

Naples
Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Vienna
Todo list: [Naples]

Oslo Stockholm

44

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna Prague

Naples
Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Vienna
Todo list: [Naples, Prague, Warsaw]

Oslo Stockholm

45

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna Prague

8
Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Naples
Todo list: [Prague, Warsaw]

Oslo Stockholm

46

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna

9
Prague

8
Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Prague
Todo list: [Warsaw]

Oslo Stockholm

47

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna

9
Prague

8
Naples 10

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Warsaw
Todo list: []

Oslo Stockholm

Breadth-first search (BFS)

We visit all the vertices at the same level
(same distance to the root) before moving
on to the next level

48

2

4

1

5

3

7 9

8
10

6

BFS vs. DFS

49

2

5

1

3

10

6 8

4
7

92

4

1

5

3

7 9

8
10

6

Breadth-first (queue) Depth-first (stack)

BFS vs. DFS

50

(tree = graph with no cycles)

Basic algorithms

BREADTH-FIRST SEARCH (Graph G)
While there is an uncolored node r

– Choose a new color
– Create an empty queue Q
– Let r be the root node, color it, and add it to Q
– While Q is not empty

• Dequeue a node v from Q
• For each of v’s neighbors u

− If u is not colored, color it and add it to Q

51

Basic algorithms

DEPTH-FIRST SEARCH (Graph G)
While there is an uncolored node r

– Choose a new color
– Create an empty stack S
– Let r be the root node, color it, and push it on S
– While S is not empty

• Pop a node v from S
• For each of v’s neighbors u

− If u is not colored, color it and push it onto S

52

Queues and Stacks

Examples of Abstract Data Types (ADTs)
ADTs fulfill a contract:
– The contract tells you what the ADT can do,

and what the behavior is
– For instance, with a stack:

• We can push and pop
• If we push X onto S and then pop S, we get

back X, and S is as before

Doesn’t tell you how it fulfills the contract

53

Implementing DFS

How can we implement a stack?
– Needs to support several operations:
– Push (add an element to the top)
– Pop (remove the element from the top)
– IsEmpty

54

256

42

17

Implementing a stack
IsEmpty
function e = IsEmpty(S)

e = (length(S) == 0);

Push (add an element to the top)
function S = push(S, x)

S = [S x]

Pop (remove an element from the top)
function [S, x] = pop(S)

n = length(S); x = S(n); S = S(1:n-1);
% but what happens if n = 0?

55

Implementing BFS

How can we implement a queue?
– Needs to support several operations:
– Enqueue (add an element to back)
– Dequeue (remove an element from front)
– IsEmpty

Not quite as easy as a stack…

56

256

42

17

Efficiency

Ideally, all of the operations (push,
pop, enqueue, dequeue, IsEmpty)
run in constant (O(1)) time

To figure out running time, we
need a model of how the
computer’s memory works

57

58

Computers and arrays

Computer memory is a large array
– We will call it M

In constant time, a computer can:
– Read any element of M (random access)
– Change any element of M to another element
– Perform any simple arithmetic operation

This is more or less what the hardware
manual for an x86 describes

Computers and arrays
Arrays in Matlab are consecutive
subsequences of M

59

M …
A = zeros(8)

Memory manipulation

How long does it take to:

– Read A(8)?

– Set A(7) = A(8)?

– Copy all the elements of an array (of size n) A
to a new part of M?

– Shift all the elements of A one cell to the left?

60

Implementing a queue: Take 1
First approach: use an array
Add (enqueue) new elements to the end
of the array
When removing an element (dequeue),
shift the entire array left one unit

61

Q = [];

Implementing a queue: Take 1
IsEmpty
function e = IsEmpty(Q)

e = (length(S) == 0);

Enqueue (add an element)
function Q = enqueue(Q,x)

Q = [Q x];

Dequeue (remove an element)
function [Q, x] = dequeue(Q)

n = length(Q); x = Q(1);
for i = 1:n-1

Q(i) = Q(i+1); % everyone steps forward one step

62

What is the running time?
IsEmpty

Enqueue (add an element)

Dequeue (remove an element)

63

Implementing a queue: Take 2
Second approach: use an array AND
Keep two pointers for the front and back
of the queue

Add new elements to the back of the array
Take old elements off the front of the
array

64

Q = zeros(1000000);
front = 1; back = 1;

front back

Implementing a queue: Take 2
IsEmpty

Enqueue (add an element)

Dequeue (remove an element)

65

	Breadth-first and depth-first traversal
	Administrivia
	Final notes on Big-O Notation
	Final notes on Big-O Notation
	Finding blobs
	Finding blobs
	Finding components
	Finding components
	Stacks and queues
	Stacks
	Queue
	Graph traversal
	Graph traversal
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Depth-first search (DFS)
	Another strategy
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Breadth-first search (BFS)
	BFS vs. DFS
	BFS vs. DFS
	Basic algorithms
	Basic algorithms
	Queues and Stacks
	Implementing DFS
	Implementing a stack
	Implementing BFS
	Efficiency
	Computers and arrays
	Computers and arrays
	Memory manipulation
	Implementing a queue: Take 1
	Implementing a queue: Take 1
	What is the running time?
	Implementing a queue: Take 2
	Implementing a queue: Take 2

