Sorting and selection – Part 2

Prof. Noah Snavely CS1114

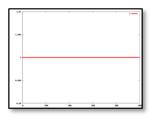
http://cs1114.cs.cornell.edu

Administrivia

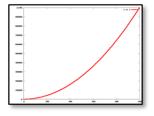
Assignment 1 due tomorrow by 5pm

- Assignment 2 will be out tomorrow
 - Two parts: smaller part due next Friday, larger part due in two weeks
- Quiz 2 next Thursday 2/12
 - Coverage through next Tuesday (topics include running time, sorting)
 - Closed book / closed note

Recap from last time: sorting



- If we sort an array, we can find the k^{th} largest element in constant (O(1)) time
 - For all k, even for the median (k = n/2)



- Sorting algorithm 1: Selection sort
 - Running time: $O(n^2)$

- Sorting algorithm 2: Quicksort
 - Running time: O(?)

Quicksort

- 1. Pick an element (pivot)
- Compare every element to the pivot and partition the array into elements < pivot and > pivot
- 3. Quicksort these smaller arrays separately

Quicksort: worst case

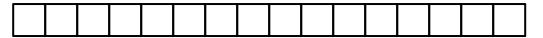
- With a bad pivot this algorithm does quite poorly
 - Degrades to selection sort
 - Number of comparisons will be O(n²)
- The worst case occurs when the array is already sorted
 - We could choose the average element instead of the first element

Quicksort: best case

- With a good choice of pivot the algorithm does quite well
- What is the best possible case?
 - Selecting the median
- How many comparisons will we do?
 - Every time quicksort is called, we have to:
 - % Compare all elements to the pivot

How many comparisons? (best case)

Suppose length(A) == n



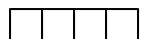
Round 1: Compare n elements to the pivot

... now break the array in half, quicksort the two halves ...



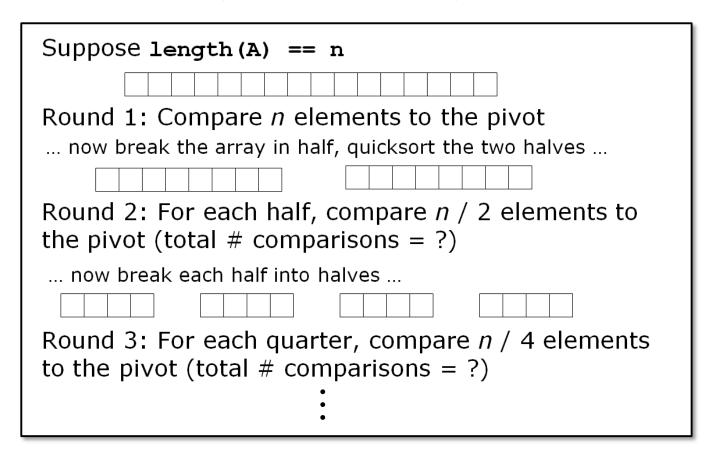
 Round 2: For each half, compare n / 2 elements to each pivot (total # comparisons = n)

... now break each half into halves ...



 Round 3: For each quarter, compare n / 4 elements to each pivot (total # comparisons = n)

How many comparisons? (best case)



How many rounds will this run for?

How many comparisons? (best case)

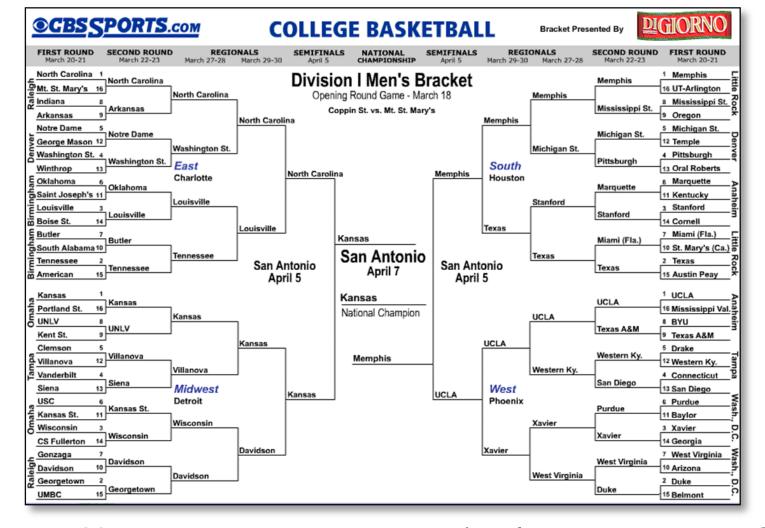
- During each round, we do a total of n comparisons
- There are log n rounds
- The total number of comparisons is n log n
- In the best case quicksort is O(n log n)

Can we expect to be lucky?

- Performance depends on the input
- "Unlucky pivots" (worst-case) give O(n²) performance
- "Lucky pivots" give O(n log n) performance
- For random inputs we get "lucky enough"
 expected runtime on a random array is O(n log n)
- Can we do better?

Back to the selection problem

- Can solve with sorting
- Is there a better way?
- Rev. Charles L. Dodgson's problem
 - Based on how to run a tennis tournament
 - Specifically, how to award 2nd prize fairly



- How many teams were in the tournament?
- How many games were played?
- Which is the second-best team?

Finding the second best team

- Could use quicksort to sort the teams
- Step 1: Choose one team as a pivot (say, Arizona)
- Step 2: Arizona plays every team
- Step 3: Put all teams worse than Arizona in Group 1, all teams better than Arizona in Group 2 (no ties allowed)
- Step 4: Recurse on Groups 1 and 2
- ... eventually will rank all the teams ...

Quicksort Tournament

Quicksort Tournament

Step 1: Choose one team (say, Arizona)

Step 2: Arizona plays every team

Step 3: Put all teams worse than Arizona in Group 1, all teams better than Arizona in Group 2 (no ties allowed)

Step 4: Recurse on groups 1 and 2

... eventually will rank all the teams ...

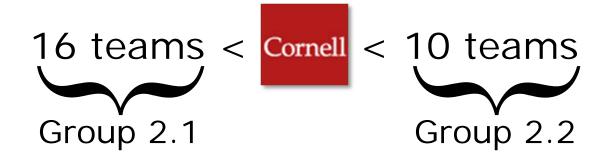
- (Note this is a bit silly AZ plays 63 games)
- This gives us a ranking of all teams
 - What if we just care about finding the 2nd-best team?

Modifying quicksort to select

 Suppose Arizona beats 36 teams, and loses to 27 teams

• If we just want to know the 2nd-best team, how can we save time?

Modifying quicksort to select – Finding the 2nd best team



7 teams < 2 teams

Modifying quicksort to select – Finding the 32nd best team

- Q: Which group do we visit next?
- The 32nd best team overall is the 4th best team in Group 1

Find kth largest element in A (< than k-1 others)

```
A = [6.0 5.4 5.5 6.2 5.3 5.0 5.9]
```

MODIFIED QUICKSORT(A, k):

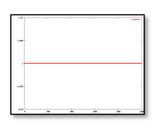
- Pick an element in A as the pivot, call it x
- Divide A into A1 (<x), A2 (=x), A3 (>x)
- If k < length(A3)</p>
 - MODIFIED QUICKSORT (A3, k)
- If k > length(A2) + length(A3)
 - Let j = k [length(A2) + length(A3)]
 - MODIFIED QUICKSORT (A1, j)
- Otherwise, return x

Modified quicksort

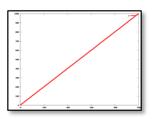
MODIFIED QUICKSORT(A, k):

- Pick an element in A as the pivot, call it x
- Divide A into A1 (<x), A2 (=x), A3 (>x)
- If k < length(A3)
 - Find the element < k others in A3
- If k > length(A2) + length(A3)
 - Let j = k [length(A2) + length(A3)]
 - Find the element < j others in A1
- Otherwise, return x
- We'll call this quickselect
- Let's consider the running time...

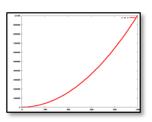
What is the running time of:



- Finding the 1st element?
 - O(1) (effort doesn't depend on input)



- Finding the biggest element?
 - O(n) (constant work per input element)



- Finding the median by repeatedly finding and removing the biggest element?
 - O(n²) (linear work per input element)
- Finding the median using quickselect?
 - Worst case? O(n^2)
 - Best case? O(n)

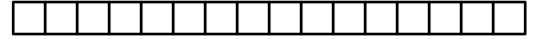
Quickselect - "medium" case

 Suppose we split the array in half each time (i.e., happen to choose the median as the pivot)

How many comparisons will there be?

How many comparisons? ("medium" case)

Suppose length(A) == n



Round 1: Compare n elements to the pivot

... now break the array in half, quickselect one half ...

Round 2: For remaining half, compare n / 2 elements to the pivot (total # comparisons = n / 2)

... now break the half in half ...

Round 3: For remaining quarter, compare n / 4 elements to the pivot (total # comparisons = n / 4)

How many comparisons? ("medium" case)

Number of comparisons =

$$n + n/2 + n/4 + n/8 + ... + 1$$

= ?

→ The "medium" case is O(n)!

Quickselect

- For random input this method actually runs in linear time (beyond the scope of this class)
- The worst case is still bad
- Quickselect gives us a way to find the kth element without actually sorting the array!

Quickselect

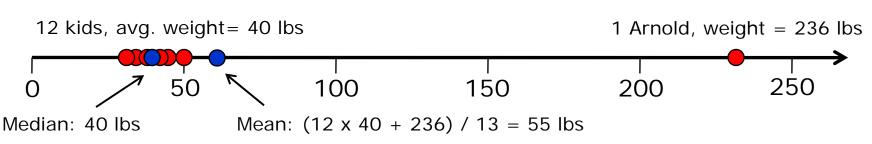
- It's possible to select in guaranteed linear time (1973)
 - Rev. Dodgson's problem
 - But the code is a little messy
 - And the analysis is messier
 http://en.wikipedia.org/wiki/Selection_algorithm
 - Beyond the scope of this course

Back to the lightstick

- By using quickselect we can find the 5% largest (or smallest) element
 - This allows us to efficiently compute the trimmed mean

What about the median?

- Another way to avoid our bad data points:
 - Use the median instead of the mean



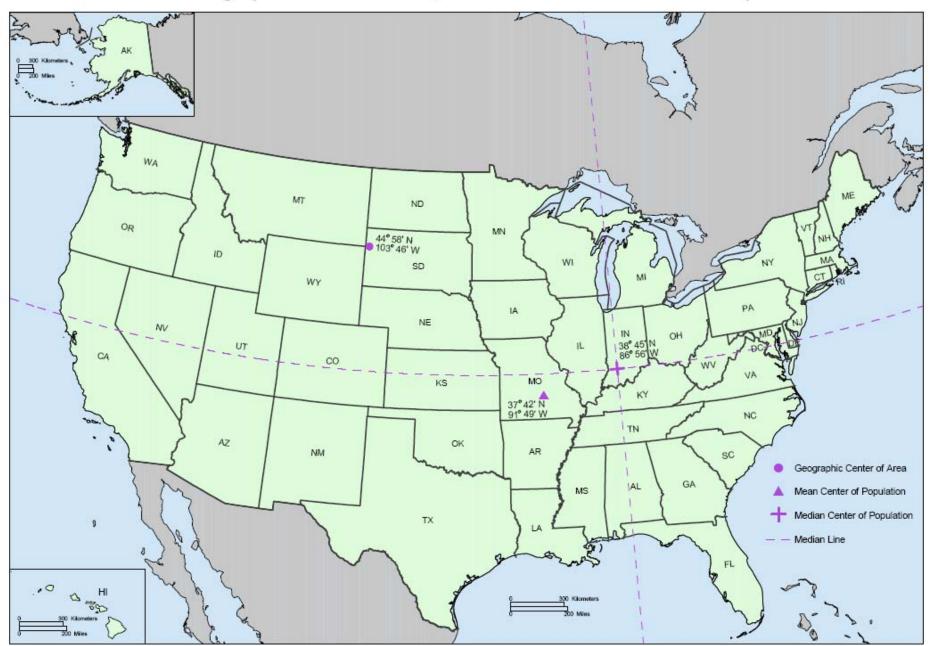
Median vector

- Mean, like median, was defined in 1D
 - For a 2D mean we used the centroid
 - Mean of x coordinates and y coordinates separately
 - Call this the "mean vector"
 - Does this work for the median also?

What is the median vector?

- In 1900, statisticians wanted to find the "geographical center of the population" to quantify westward shift
- Why not the centroid?
 - Someone being born in San Francisco changes the centroid much more than someone being born in Indiana
- What about the "median vector"?
 - Take the median of the x coordinates and the median of the y coordinates separately

Position of the Geographic Center of Area, Mean and Median Centers of Population: 2000



Median vector

- A little thought will show you that this doesn't really make a lot of sense
 - Nonetheless, it's a common solution, and we will implement it for CS1114
 - In situations like ours it works pretty well
- It's almost never an actual datapoint
- It depends upon rotations!

Can we do even better?

- None of what we described works that well if we have widely scattered red pixels
 - And we can't figure out lightstick orientation
- Is it possible to do even better?
 - Yes!
- We will focus on:
 - Finding "blobs" (connected red pixels)
 - Summarizing the shape of a blob
 - Computing orientation from this
- We'll need brand new tricks!

