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Administrivia

= Assignment 1 due tomorrow by 5pm

= Assignment 2 will be out tomorrow

— Two parts: smaller part due next Friday,
larger part due in two weeks

= Quiz 2 next Thursday 2/12
— Coverage through next Tuesday
(topics include running time, sorting)
— Closed book / closed note
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Recap from last time: sorting

= |f we sort an array, we can find the kt"
) largest element in constant (O(1)) time
EE— — For all k, even for the median (k = n/2)

: = Sorting algorithm 1: Selection sort
- — Running time: O(n2)

? = Sorting algorithm 2: Quicksort

5 — Running time: O(?)
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Quicksort

1. Pick an element (pivot)

2. Compare every element to the pivot and
partition the array into elements < pivot
and > pivot

3. Quicksort these smaller arrays
separately
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Quicksort: worst case

= With a bad pivot this algorithm does quite
poorly

— Degrades to selection sort
— Number of comparisons will be O(n?)

= The worst case occurs when the array Is
already sorted

— We could choose the average element instead
of the first element
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Quicksort: best case

= With a good choice of pivot the algorithm
does quite well

= What is the best possible case?
— Selecting the median

= How many comparisons will we do?
— Every time quicksort is called, we have to:

% Compare all elements to the pivot
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How many comparisons?
(best case)

= Suppose length(A) == n

= Round 1: Compare n elements to the pivot
... how break the array in half, quicksort the two halves ...

= Round 2: For each half, compare n / 2 elements to
each pivot (total # comparisons = n)

... now break each half into halves ...

= Round 3: For each quarter, compare n / 4 elements
to each pivot (total # comparisons = n)
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How many comparisons?
(best case)

Suppose length(A) == n

Round 1: Compare n elements to the pivot
... how break the array in half, quicksort the two halves ...

BN
Round 2: For each half, compare n / 2 elements to
the pivot (total # comparisons = ?)

... how break each half into halves ...

Round 3: For each quarter, compare n/ 4 elements
to the pivot (total # comparisons = ?)

How many rounds will this run for?
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How many comparisons?
(best case)

= During each round, we do a total of n
comparisons

= There are log n rounds

= The total number of comparisons is
nlog n

= In the best case quicksort is O(n log n)
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Can we expect to be lucky?

= Performance depends on the input

= “Unlucky pivots” (worst-case) give O(n?)
performance

= “Lucky pivots” give O(n log n)
performance

= For random inputs we get “lucky enough
— expected runtime on a random array Is
O(n log n)

= Can we do better?
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Back to the selection problem

= Can solve with sorting
= |s there a better way?

= Rev. Charles L. Dodgson’s problem
— Based on how to run a tennis tournament
— Specifically, how to award 2" prize fairly
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e How many teams were In the tournament?
e How many games were played?
e \Which is the second-best team?
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Finding the second best team

= Could use quicksort to sort the teams

= Step 1: Choose one team as a pivot (say, Arizona)
= Step 2: Arizona plays every team

= Step 3: Put all teams worse than Arizona in Group
1, all teams better than Arizona in Group 2 (no ties
allowed)

= Step 4: Recurse on Groups 1 and 2
= ... eventually will rank all the teams ...
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Quicksort Tournament

Quicksort Tournament
Step 1: Choose one team (say, Arizona)
Step 2: Arizona plays every team

Step 3: Put all teams worse than Arizona in
Group 1, all teams better than Arizona in
Group 2 (no ties allowed)

Step 4: Recurse on groups 1 and 2
... eventually will rank all the teams ...

= (Note this is a bit silly — AZ plays 63
games)

= This gives us a ranking of all teams

— What if we just care about finding the 2"d-best
team?
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Modifying quicksort to select

= Suppose Arizona beats 36 teams, and
loses to 27 teams

36 teams < A < 27 teams
\_\/-/ ? \’\f./

Group 1 Group 2

= If we just want to know the 2"d-best team,
how can we save time?
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Modifying quicksort to select —
Finding the 2"d best team

36 teams < A < 27 teams

Group 1 Group 2
16 teams < < 10 teams
Group 2.1 Group 2.2

[/ teams < < 2 teams
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Modifying quicksort to select —
Finding the 32"d pest team

36 teams < A < 27 teams
\‘\P/ ® b\ﬂj

Group 1 Group 2

4
20 teams < Mgk < 15 teams

\ < Masow | ,

Group 1.1 Group 1.2

- Q: Which group do we visit next?
- The 32Md pest team overall is the
4th pest team in Group 1
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Find kth largest element in A
(< than k-1 others)

A=]6.0 5.4 5.5 6.2 5.3 5.0 5.9]

MODIFIED QUICKSORT(A, k):
= Pick an element in A as the pivot, call it x
= Divide A Iinto Al (<x), A2 (=x), A3 (>X)
= |If k < length(A3)
— MODIFIED QUICKSORT (A3, k)

= |If k = length(A2) + length(A3)
— Let ] = k — [length(A2) + length(A3)]
— MODIFIED QUICKSORT (A1, j)

= Otherwise, return x
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Modified quicksort

MODIFIED QUICKSORT(A, k):
= Pick an element in A as the pivot, call it x
= Divide A into Al (<x), A2 (=x), A3 (>X)
= If k < length(A3)
— Find the element < k others in A3
= If k > length(A2) + length(A3)
— Letj = k — [length(A2) + length(A3)]
— Find the element < j others in A1
= Otherwise, return x

= We’'ll call this quickselect
= Let’s consider the running time...
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What is the running time of:

= Finding the 1St element?
— 0O(1) (effort doesn’t depend on input)

: 1 = Finding the biggest element?
/ — O(n) (constant work per input element)

- removing the biggest element?
pE — 0O(n?) (linear work per input element)

/ = Finding the median by repeatedly finding and

= Finding the median using quickselect?
— Worst case? O(n"™2)
— Best case? O(n)
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Quickselect — “medium” case

= Suppose we split the array in half each

time (i.e., happen to choose the median
as the pivot)

= How many comparisons will there be?
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How many comparisons?
(“medium” case)

= Suppose length(A) == n

= Round 1: Compare n elements to the pivot
... how break the array in half, quickselect one half ...

= Round 2: For remaining half, compare n / 2
elements to the pivot (total # comparisons = n / 2)

... now break the half in half ...

= Round 3: For remaining quarter, compare n / 4
elements to the pivot (total # comparisons = n / 4)
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How many comparisons?
(“medium” case)

Number of comparisons =

nNn+n/2+n/4+n/8+..+1
= ?

- The “medium” case is O(n)!
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Quickselect

= For random input this method actually
runs in linear time (beyond the scope of

this class)
= The worst case iIs still bad

= Quickselect gives us a way to find the kt
element without actually sorting the array!
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Quickselect

= |t’s possible to select in guaranteed linear
time (1973)
— Rev. Dodgson’s problem

— But the code is a little messy
= And the analysis is messier
http://en.wikipedia.org/wiki/Selection_algorithm

= Beyond the scope of this course
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Back to the lightstick

= By using quickselect we can find the 5%
largest (or smallest) element

— This allows us to efficiently compute the
trimmed mean
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What about the median?

= Another way to avoid our bad data points:
— Use the median instead of the mean

12 kids, avg. weight= 40 Ibs 1 Arnold, weight = 236 Ibs
Qoo | | | &>
o 7 50 \_ 100 150 200 250
Median: 40 lbs Mean: (12 x 40 + 236) / 13 = 55 Ibs
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Median vector

= Mean, like median, was defined in 1D
— For a 2D mean we used the centroid

— Mean of x coordinates and y coordinates
separately

e Call this the “mean vector”

— Does this work for the median also?
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What i1s the median vector?

= |In 1900, statisticians wanted
to find the “geographical

T 2 R e e s o e s oo -

=

Erazefas Ko1s 5 ites center of the population” to
————— guantify westward shift

= Why not the centroid?

s SPACE BAR to centinue — Someone be|ng born in San

Francisco changes the centroid
much more than someone being
born in Indiana

= \What about the “median
vector”?

— Take the median of the x
coordinates and the median of the
y coordinates separately
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Position of the Geographic Center of Area, Mean and Median Centers of Population: 2000

@ Geographic Center of Area
A Mean Center of Population
=t Median Center of Poputation

— — Median Line

-
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3 >

5. Department of Commerce Economics and Statstcs Administration U5, Census Bureau Prepared by the Geography Division



Median vector

= A little thought will show you that this
doesn’t really make a lot of sense

— Nonetheless, It’s a common solution, and we
will implement it for CS1114

— In situations like ours it works pretty well
= |t’s almost never an actual datapoint
= |t depends upon rotations!
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Can we do even better?

= None of what we described works that well
If we have widely scattered red pixels

— And we can’t figure out lightstick orientation

= |s it possible to do even better?
— Yesl!

= We will focus on:
— Finding “blobs” (connected red pixels)
— Summarizing the shape of a blob
— Computing orientation from this

= We'll need brand new tricks!
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