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Administrivia
Assignment 1 due tomorrow by 5pm

Assignment 2 will be out tomorrow
– Two parts: smaller part due next Friday,     

larger part due in two weeks

Quiz 2 next Thursday 2/12
– Coverage through next Tuesday

(topics include running time, sorting)
– Closed book / closed note



Recap from last time: sorting

If we sort an array, we can find the kth

largest element in constant (O(1)) time
– For all k, even for the median (k = n/2)

Sorting algorithm 1: Selection sort
– Running time: O(n2)

Sorting algorithm 2: Quicksort
– Running time: O(?)
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?



Quicksort

1. Pick an element (pivot)
2. Compare every element to the pivot and 

partition the array into elements < pivot 
and > pivot

3. Quicksort these smaller arrays 
separately

4



Quicksort: worst case

With a bad pivot this algorithm does quite 
poorly
– Degrades to selection sort
– Number of comparisons will be O(n2)

The worst case occurs when the array is 
already sorted
– We could choose the average element instead 

of the first element
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Quicksort: best case

With a good choice of pivot the algorithm 
does quite well
What is the best possible case?
– Selecting the median

How many comparisons will we do?
– Every time quicksort is called, we have to:

% Compare all elements to the pivot



How many comparisons?
(best case)

Suppose length(A) == n

Round 1: Compare n elements to the pivot
… now break the array in half, quicksort the two halves …

Round 2: For each half, compare n / 2 elements to 
each pivot (total # comparisons = n)
… now break each half into halves …

Round 3: For each quarter, compare n / 4 elements 
to each pivot (total # comparisons = n)
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How many comparisons?
(best case)

How many rounds will this run for?

…



How many comparisons?
(best case)

During each round, we do a total of n
comparisons
There are log n rounds
The total number of comparisons is 
n log n
In the best case quicksort is O(n log n)
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Can we expect to be lucky?

Performance depends on the input
“Unlucky pivots” (worst-case) give O(n2) 
performance
“Lucky pivots” give O(n log n) 
performance
For random inputs we get “lucky enough” 
– expected runtime on a random array is 
O(n log n)
Can we do better?
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Back to the selection problem
Can solve with sorting
Is there a better way?
Rev. Charles L. Dodgson’s problem
– Based on how to run a tennis tournament
– Specifically, how to award 2nd prize fairly

http://en.wikipedia.org/wiki/Image:LewisCarrollSelfPhoto.jpg
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• How many teams were in the tournament?
• How many games were played?
• Which is the second-best team?



Finding the second best team

Could use quicksort to sort the teams

Step 1: Choose one team as a pivot (say, Arizona)
Step 2: Arizona plays every team
Step 3: Put all teams worse than Arizona in Group 
1, all teams better than Arizona in Group 2 (no ties 
allowed)
Step 4: Recurse on Groups 1 and 2
… eventually will rank all the teams …
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Quicksort Tournament

(Note this is a bit silly – AZ plays 63 
games)
This gives us a ranking of all teams
– What if we just care about finding the 2nd-best 

team?
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Quicksort Tournament
Step 1: Choose one team (say, Arizona)
Step 2: Arizona plays every team
Step 3: Put all teams worse than Arizona in 

Group 1, all teams better than Arizona in 
Group 2 (no ties allowed)

Step 4: Recurse on groups 1 and 2
… eventually will rank all the teams …



Modifying quicksort to select
Suppose Arizona beats 36 teams, and 
loses to 27 teams

If we just want to know the 2nd-best team, 
how can we save time?
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< 27 teams36 teams <

Group 2Group 1



Modifying quicksort to select –
Finding the 2nd best team
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< 27 teams36 teams <

Group 2Group 1

< 10 teams16 teams <

Group 2.2Group 2.1

< 2 teams7 teams <



Modifying quicksort to select –
Finding the 32nd best team
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< 27 teams36 teams <

Group 2Group 1

< 15 teams20 teams <

Group 1.2Group 1.1

- Q: Which group do we visit next?
- The 32nd best team overall is the  

4th best team in Group 1
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Find kth largest element in A
(< than k-1 others)

MODIFIED QUICKSORT(A, k):
Pick an element in A as the pivot, call it x
Divide A into A1 (<x), A2 (=x), A3 (>x)
If k < length(A3)
– MODIFIED QUICKSORT (A3, k)

If k > length(A2) + length(A3)
– Let j = k – [length(A2) + length(A3)]
– MODIFIED QUICKSORT (A1, j) 

Otherwise, return x

A = [ 6.0  5.4  5.5  6.2  5.3  5.0  5.9 ]



Modified quicksort

We’ll call this quickselect
Let’s consider the running time…
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MODIFIED QUICKSORT(A, k):
Pick an element in A as the pivot, call it x
Divide A into A1 (<x), A2 (=x), A3 (>x)
If k < length(A3)
– Find the element < k others in A3

If k > length(A2) + length(A3)
– Let j = k – [length(A2) + length(A3)]
– Find the element < j others in A1 

Otherwise, return x
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What is the running time of:
Finding the 1st element?
– O(1) (effort doesn’t depend on input)

Finding the biggest element?
– O(n) (constant work per input element)

Finding the median by repeatedly finding and 
removing the biggest element?
– O(n2) (linear work per input element)

Finding the median using quickselect?
– Worst case?  O(n^2)
– Best case?    O(n)



Quickselect – “medium” case

Suppose we split the array in half each 
time (i.e., happen to choose the median 
as the pivot)

How many comparisons will there be?
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How many comparisons?
(“medium” case)

Suppose length(A) == n

Round 1: Compare n elements to the pivot
… now break the array in half, quickselect one half …

Round 2: For remaining half, compare n / 2 
elements to the pivot (total # comparisons = n / 2)
… now break the half in half …

Round 3: For remaining quarter, compare n / 4 
elements to the pivot (total # comparisons = n / 4)
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Number of comparisons = 
n + n / 2 + n / 4 + n / 8 + … + 1

= ?

The “medium” case is O(n)!
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How many comparisons?
(“medium” case)
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Quickselect

For random input this method actually 
runs in linear time (beyond the scope of 
this class)
The worst case is still bad
Quickselect gives us a way to find the kth

element without actually sorting the array!



Quickselect

It’s possible to select in guaranteed linear 
time (1973)
– Rev. Dodgson’s problem
– But the code is a little messy

• And the analysis is messier
http://en.wikipedia.org/wiki/Selection_algorithm

Beyond the scope of this course
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http://en.wikipedia.org/wiki/Selection_algorithm
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Back to the lightstick

By using quickselect we can find the 5% 
largest (or smallest) element
– This allows us to efficiently compute the 

trimmed mean
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What about the median?
Another way to avoid our bad data points: 
– Use the median instead of the mean

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Median: 40 lbs Mean: (12 x 40 + 236) / 13 = 55 lbs



Median vector

Mean, like median, was defined in 1D
– For a 2D mean we used the centroid
– Mean of x coordinates and y coordinates 

separately 
• Call this the “mean vector”

– Does this work for the median also?
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What is the median vector?
In 1900, statisticians wanted 
to find the “geographical 
center of the population” to 
quantify westward shift
Why not the centroid?
– Someone being born in San 

Francisco changes the centroid
much more than someone being 
born in Indiana

What about the “median 
vector”?
– Take the median of the x 

coordinates and the median of the 
y coordinates separately
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Median vector
A little thought will show you that this 
doesn’t really make a lot of sense
– Nonetheless, it’s a common solution, and we 

will implement it for CS1114
– In situations like ours it works pretty well

It’s almost never an actual datapoint
It depends upon rotations!
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Can we do even better?
None of what we described works that well 
if we have widely scattered red pixels
– And we can’t figure out lightstick orientation

Is it possible to do even better?
– Yes!

We will focus on:
– Finding “blobs” (connected red pixels)
– Summarizing the shape of a blob
– Computing orientation from this

We’ll need brand new tricks!



Next time: graphs
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Next time:
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