
Sorting and selection – Part 2

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu

2

Administrivia
Assignment 1 due tomorrow by 5pm

Assignment 2 will be out tomorrow
– Two parts: smaller part due next Friday,

larger part due in two weeks

Quiz 2 next Thursday 2/12
– Coverage through next Tuesday

(topics include running time, sorting)
– Closed book / closed note

Recap from last time: sorting

If we sort an array, we can find the kth

largest element in constant (O(1)) time
– For all k, even for the median (k = n/2)

Sorting algorithm 1: Selection sort
– Running time: O(n2)

Sorting algorithm 2: Quicksort
– Running time: O(?)

3

?

Quicksort

1. Pick an element (pivot)
2. Compare every element to the pivot and

partition the array into elements < pivot
and > pivot

3. Quicksort these smaller arrays
separately

4

Quicksort: worst case

With a bad pivot this algorithm does quite
poorly
– Degrades to selection sort
– Number of comparisons will be O(n2)

The worst case occurs when the array is
already sorted
– We could choose the average element instead

of the first element

5

6

Quicksort: best case

With a good choice of pivot the algorithm
does quite well
What is the best possible case?
– Selecting the median

How many comparisons will we do?
– Every time quicksort is called, we have to:

% Compare all elements to the pivot

How many comparisons?
(best case)

Suppose length(A) == n

Round 1: Compare n elements to the pivot
… now break the array in half, quicksort the two halves …

Round 2: For each half, compare n / 2 elements to
each pivot (total # comparisons = n)
… now break each half into halves …

Round 3: For each quarter, compare n / 4 elements
to each pivot (total # comparisons = n)

7

How many comparisons?
(best case)

How many rounds will this run for?

…

How many comparisons?
(best case)

During each round, we do a total of n
comparisons
There are log n rounds
The total number of comparisons is
n log n
In the best case quicksort is O(n log n)

9

Can we expect to be lucky?

Performance depends on the input
“Unlucky pivots” (worst-case) give O(n2)
performance
“Lucky pivots” give O(n log n)
performance
For random inputs we get “lucky enough”
– expected runtime on a random array is
O(n log n)
Can we do better?

10

11

Back to the selection problem
Can solve with sorting
Is there a better way?
Rev. Charles L. Dodgson’s problem
– Based on how to run a tennis tournament
– Specifically, how to award 2nd prize fairly

http://en.wikipedia.org/wiki/Image:LewisCarrollSelfPhoto.jpg

12

• How many teams were in the tournament?
• How many games were played?
• Which is the second-best team?

Finding the second best team

Could use quicksort to sort the teams

Step 1: Choose one team as a pivot (say, Arizona)
Step 2: Arizona plays every team
Step 3: Put all teams worse than Arizona in Group
1, all teams better than Arizona in Group 2 (no ties
allowed)
Step 4: Recurse on Groups 1 and 2
… eventually will rank all the teams …

13

Quicksort Tournament

(Note this is a bit silly – AZ plays 63
games)
This gives us a ranking of all teams
– What if we just care about finding the 2nd-best

team?

14

Quicksort Tournament
Step 1: Choose one team (say, Arizona)
Step 2: Arizona plays every team
Step 3: Put all teams worse than Arizona in

Group 1, all teams better than Arizona in
Group 2 (no ties allowed)

Step 4: Recurse on groups 1 and 2
… eventually will rank all the teams …

Modifying quicksort to select
Suppose Arizona beats 36 teams, and
loses to 27 teams

If we just want to know the 2nd-best team,
how can we save time?

15

< 27 teams36 teams <

Group 2Group 1

Modifying quicksort to select –
Finding the 2nd best team

16

< 27 teams36 teams <

Group 2Group 1

< 10 teams16 teams <

Group 2.2Group 2.1

< 2 teams7 teams <

Modifying quicksort to select –
Finding the 32nd best team

17

< 27 teams36 teams <

Group 2Group 1

< 15 teams20 teams <

Group 1.2Group 1.1

- Q: Which group do we visit next?
- The 32nd best team overall is the

4th best team in Group 1

18

Find kth largest element in A
(< than k-1 others)

MODIFIED QUICKSORT(A, k):
Pick an element in A as the pivot, call it x
Divide A into A1 (<x), A2 (=x), A3 (>x)
If k < length(A3)
– MODIFIED QUICKSORT (A3, k)

If k > length(A2) + length(A3)
– Let j = k – [length(A2) + length(A3)]
– MODIFIED QUICKSORT (A1, j)

Otherwise, return x

A = [6.0 5.4 5.5 6.2 5.3 5.0 5.9]

Modified quicksort

We’ll call this quickselect
Let’s consider the running time…

19

MODIFIED QUICKSORT(A, k):
Pick an element in A as the pivot, call it x
Divide A into A1 (<x), A2 (=x), A3 (>x)
If k < length(A3)
– Find the element < k others in A3

If k > length(A2) + length(A3)
– Let j = k – [length(A2) + length(A3)]
– Find the element < j others in A1

Otherwise, return x

20

What is the running time of:
Finding the 1st element?
– O(1) (effort doesn’t depend on input)

Finding the biggest element?
– O(n) (constant work per input element)

Finding the median by repeatedly finding and
removing the biggest element?
– O(n2) (linear work per input element)

Finding the median using quickselect?
– Worst case? O(n^2)
– Best case? O(n)

Quickselect – “medium” case

Suppose we split the array in half each
time (i.e., happen to choose the median
as the pivot)

How many comparisons will there be?

21

How many comparisons?
(“medium” case)

Suppose length(A) == n

Round 1: Compare n elements to the pivot
… now break the array in half, quickselect one half …

Round 2: For remaining half, compare n / 2
elements to the pivot (total # comparisons = n / 2)
… now break the half in half …

Round 3: For remaining quarter, compare n / 4
elements to the pivot (total # comparisons = n / 4)

22

Number of comparisons =
n + n / 2 + n / 4 + n / 8 + … + 1

= ?

The “medium” case is O(n)!

23

How many comparisons?
(“medium” case)

24

Quickselect

For random input this method actually
runs in linear time (beyond the scope of
this class)
The worst case is still bad
Quickselect gives us a way to find the kth

element without actually sorting the array!

Quickselect

It’s possible to select in guaranteed linear
time (1973)
– Rev. Dodgson’s problem
– But the code is a little messy

• And the analysis is messier
http://en.wikipedia.org/wiki/Selection_algorithm

Beyond the scope of this course

25

http://en.wikipedia.org/wiki/Selection_algorithm

26

Back to the lightstick

By using quickselect we can find the 5%
largest (or smallest) element
– This allows us to efficiently compute the

trimmed mean

27

What about the median?
Another way to avoid our bad data points:
– Use the median instead of the mean

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Median: 40 lbs Mean: (12 x 40 + 236) / 13 = 55 lbs

Median vector

Mean, like median, was defined in 1D
– For a 2D mean we used the centroid
– Mean of x coordinates and y coordinates

separately
• Call this the “mean vector”

– Does this work for the median also?

28

29

What is the median vector?
In 1900, statisticians wanted
to find the “geographical
center of the population” to
quantify westward shift
Why not the centroid?
– Someone being born in San

Francisco changes the centroid
much more than someone being
born in Indiana

What about the “median
vector”?
– Take the median of the x

coordinates and the median of the
y coordinates separately

30

31

Median vector
A little thought will show you that this
doesn’t really make a lot of sense
– Nonetheless, it’s a common solution, and we

will implement it for CS1114
– In situations like ours it works pretty well

It’s almost never an actual datapoint
It depends upon rotations!

32

Can we do even better?
None of what we described works that well
if we have widely scattered red pixels
– And we can’t figure out lightstick orientation

Is it possible to do even better?
– Yes!

We will focus on:
– Finding “blobs” (connected red pixels)
– Summarizing the shape of a blob
– Computing orientation from this

We’ll need brand new tricks!

Next time: graphs

33

Next time:

	Sorting and selection – Part 2
	Administrivia
	Recap from last time: sorting
	Quicksort
	Quicksort: worst case
	Quicksort: best case
	How many comparisons?�(best case)
	How many comparisons?�(best case)
	How many comparisons?�(best case)
	Can we expect to be lucky?
	Back to the selection problem
	Slide Number 12
	Finding the second best team
	Quicksort Tournament
	Modifying quicksort to select
	Modifying quicksort to select – Finding the 2nd best team
	Modifying quicksort to select – Finding the 32nd best team
	Find kth largest element in A�(< than k-1 others)
	Modified quicksort
	What is the running time of:
	Quickselect – “medium” case
	How many comparisons?�(“medium” case)
	How many comparisons?�(“medium” case)
	Quickselect
	Quickselect
	Back to the lightstick
	What about the median?
	Median vector
	What is the median vector?
	Slide Number 30
	Median vector
	Can we do even better?
	Next time: graphs

