Sorting and selection — Part 2

Prof. Noah Snavely
CS1114
http://csll1l14.cs.cornell.edu

gejy Cornell University
s/ Computer Science

Administrivia

= Assignment 1 due tomorrow by 5pm

= Assignment 2 will be out tomorrow

— Two parts: smaller part due next Friday,
larger part due in two weeks

= Quiz 2 next Thursday 2/12
— Coverage through next Tuesday
(topics include running time, sorting)
— Closed book / closed note

i@j@ Cornell University
RS

Recap from last time: sorting

= |f we sort an array, we can find the kt"
) largest element in constant (O(1)) time
EE— — For all k, even for the median (k = n/2)

: = Sorting algorithm 1: Selection sort
- — Running time: O(n2)

? = Sorting algorithm 2: Quicksort

5 — Running time: O(?)

@ Cornell University

Quicksort

1. Pick an element (pivot)

2. Compare every element to the pivot and
partition the array into elements < pivot
and > pivot

3. Quicksort these smaller arrays
separately

i@j@ Cornell University
RS

Quicksort: worst case

= With a bad pivot this algorithm does quite
poorly

— Degrades to selection sort
— Number of comparisons will be O(n?)

= The worst case occurs when the array Is
already sorted

— We could choose the average element instead
of the first element

i@j@ Cornell University
RS

Quicksort: best case

= With a good choice of pivot the algorithm
does quite well

= What is the best possible case?
— Selecting the median

= How many comparisons will we do?
— Every time quicksort is called, we have to:

% Compare all elements to the pivot

@ Cornell University

How many comparisons?
(best case)

= Suppose length(A) == n

= Round 1: Compare n elements to the pivot
... how break the array in half, quicksort the two halves ...

= Round 2: For each half, compare n / 2 elements to
each pivot (total # comparisons = n)

... now break each half into halves ...

= Round 3: For each quarter, compare n / 4 elements
to each pivot (total # comparisons = n)

i@j@ Cornell University
RS

How many comparisons?
(best case)

Suppose length(A) == n

Round 1: Compare n elements to the pivot
... how break the array in half, quicksort the two halves ...

BN
Round 2: For each half, compare n / 2 elements to
the pivot (total # comparisons = ?)

... how break each half into halves ...

Round 3: For each quarter, compare n/ 4 elements
to the pivot (total # comparisons = ?)

How many rounds will this run for?

i@j@ Cornell University
RS

How many comparisons?
(best case)

= During each round, we do a total of n
comparisons

= There are log n rounds

= The total number of comparisons is
nlog n

= In the best case quicksort is O(n log n)

@ Cornell University

Can we expect to be lucky?

= Performance depends on the input

= “Unlucky pivots” (worst-case) give O(n?)
performance

= “Lucky pivots” give O(n log n)
performance

= For random inputs we get “lucky enough
— expected runtime on a random array Is
O(n log n)

= Can we do better?

i@j@ Cornell University
RS

Back to the selection problem

= Can solve with sorting
= |s there a better way?

= Rev. Charles L. Dodgson’s problem
— Based on how to run a tennis tournament
— Specifically, how to award 2" prize fairly

@ Cornell University

http://en.wikipedia.org/wiki/Image:LewisCarrollSelfPhoto.jpg

SCBSSPORTS com COLLEGE BASKETBALL socictprniasy
FIRST ROUND SECOND ROUND REGIONALS SEMIFINALS NATIONAL SEMIFINALS REGIONALS SECOND ROUND FIRST ROUND
March 20-21 March 22-23 March 27-28 March 29-30 April § CHAMPIONSHIP April 5 March 29-30 March 27-28 Mareh 22-23 March 20-21
North Carolina 1 I] 1 Memphis c
B st warys s o Carline Division | Men's Bracket %g
2 dian’ﬂ p North Carolina Opening Round Game - March 18 2 Missloalnoi Bt 2
(=]
[+ Arkansas R Arkansas Coppin St. vs. Mt. St. Mary's Mississippi St. . " 2
N o North Carolina =
tre 5
e e Notre Dame Michigan St. 2_Michigan St. (=]
§ George Mason 12— o i Temple
gWashin n St. 4 Weshi s gton St. burah 4_Pittsburgh é
E Charlotte e Houston Marguett
2:::3:::ma : Oklshoma Margquette Iiul K 2 ;
n osi's 1 i 1 'ty @
£ Louisville 3 Lovisvile Stanford ; St:f:rd 2
Ly Sntord__{ comet >
@ Baise St u Louisville Texas Lol
E Loulsville | -
g th Alabama R S . . Mary's (Ca.)®
=T 2 K. . N . an Al'ltOth . Texas T Pl
Eomeem=s Tennessee San Antonio April 7 San Antonio Texas Zexas 8
e L Anta pr 1 Anto LS oy
Kan 1 1 ucLA
£ Port::d s tejonses B — ueLa 16 Missi i Val 5
. g 3 1 i 158155 al.
g ONLY : Kansas National Champion UCLA T
°© UNLV Texas AEM — 3
Clemson 5 Kansss UCLA 5 Drake -
T Momphls | e o2 Westem Ky 3
jyesnove | Li b, N
= Vanderbilt 4 Sien Villanova Western K G DI 4 Connecticut B
sioms oo Jprigiest . West San0ieg0 [, sonbiego
ANSas UCLA =
usc [Detroit Phoenix & _Purdue =
2 Kansas St. Purdue 0
g Kansas St. 11 . 11 Baylor ¥
o Wisconsin 3 Wisconsin_ Auviar 3 Xavier o
S Fulleton _1a] Miscensin Xader — [iiceoga °©
Gonzaga . Davidson Xavier 7 West inia =
£ Davidson West Virginia :
& Georgetown 2 Georaetown oub 2 Duke o
uwec 1 vke Jispoimont

e How many teams were In the tournament?
e How many games were played?
e \Which is the second-best team?

Cornell University

Finding the second best team

= Could use quicksort to sort the teams

= Step 1: Choose one team as a pivot (say, Arizona)
= Step 2: Arizona plays every team

= Step 3: Put all teams worse than Arizona in Group
1, all teams better than Arizona in Group 2 (no ties
allowed)

= Step 4: Recurse on Groups 1 and 2
= ... eventually will rank all the teams ...

i@j@ Cornell University
RS

Quicksort Tournament

Quicksort Tournament
Step 1: Choose one team (say, Arizona)
Step 2: Arizona plays every team

Step 3: Put all teams worse than Arizona in
Group 1, all teams better than Arizona in
Group 2 (no ties allowed)

Step 4: Recurse on groups 1 and 2
... eventually will rank all the teams ...

= (Note this is a bit silly — AZ plays 63
games)

= This gives us a ranking of all teams

— What if we just care about finding the 2"d-best
team?

i@j@ Cornell University
RS

Modifying quicksort to select

= Suppose Arizona beats 36 teams, and
loses to 27 teams

36 teams < A < 27 teams
_\/-/ ? \’\f./

Group 1 Group 2

= If we just want to know the 2"d-best team,
how can we save time?

@ Cornell University

Modifying quicksort to select —
Finding the 2"d best team

36 teams < A < 27 teams

Group 1 Group 2
16 teams < < 10 teams
Group 2.1 Group 2.2

[/ teams < < 2 teams

@ Cornell University

Modifying quicksort to select —
Finding the 32"d pest team

36 teams < A < 27 teams
\‘\P/ ® b\ﬂj

Group 1 Group 2

4
20 teams < Mgk < 15 teams

\ < Masow | ,

Group 1.1 Group 1.2

- Q: Which group do we visit next?
- The 32Md pest team overall is the
4th pest team in Group 1

i@j@ Cornell University
RS

Find kth largest element in A
(< than k-1 others)

A=]6.0 5.4 5.5 6.2 5.3 5.0 5.9]

MODIFIED QUICKSORT(A, k):
= Pick an element in A as the pivot, call it x
= Divide A Iinto Al (<x), A2 (=x), A3 (>X)
= |If k < length(A3)
— MODIFIED QUICKSORT (A3, k)

= |If k = length(A2) + length(A3)
— Let] = k — [length(A2) + length(A3)]
— MODIFIED QUICKSORT (A1, j)

= Otherwise, return x

i@j@ Cornell University
RS

Modified quicksort

MODIFIED QUICKSORT(A, k):
= Pick an element in A as the pivot, call it x
= Divide A into Al (<x), A2 (=x), A3 (>X)
= If k < length(A3)
— Find the element < k others in A3
= If k > length(A2) + length(A3)
— Letj = k — [length(A2) + length(A3)]
— Find the element < j others in A1
= Otherwise, return x

= We’'ll call this quickselect
= Let’s consider the running time...

i@j@ Cornell University
RS

What is the running time of:

= Finding the 1St element?
— 0O(1) (effort doesn’t depend on input)

: 1 = Finding the biggest element?
/ — O(n) (constant work per input element)

- removing the biggest element?
pE — 0O(n?) (linear work per input element)

/ = Finding the median by repeatedly finding and

= Finding the median using quickselect?
— Worst case? O(n"™2)
— Best case? O(n)

i@j@ Cornell University
RS

Quickselect — “medium” case

= Suppose we split the array in half each

time (i.e., happen to choose the median
as the pivot)

= How many comparisons will there be?

@ Cornell University

How many comparisons?
(“medium” case)

= Suppose length(A) == n

= Round 1: Compare n elements to the pivot
... how break the array in half, quickselect one half ...

= Round 2: For remaining half, compare n / 2
elements to the pivot (total # comparisons = n / 2)

... now break the half in half ...

= Round 3: For remaining quarter, compare n / 4
elements to the pivot (total # comparisons = n / 4)

i@j@ Cornell University
RS

How many comparisons?
(“medium” case)

Number of comparisons =

nNn+n/2+n/4+n/8+..+1
= ?

- The “medium” case is O(n)!

@ Cornell University

Quickselect

= For random input this method actually
runs in linear time (beyond the scope of

this class)
= The worst case iIs still bad

= Quickselect gives us a way to find the kt
element without actually sorting the array!

i@j@ Cornell University
RS

Quickselect

= |t’s possible to select in guaranteed linear
time (1973)
— Rev. Dodgson’s problem

— But the code is a little messy
= And the analysis is messier
http://en.wikipedia.org/wiki/Selection_algorithm

= Beyond the scope of this course

i@j@ Cornell University
RS

http://en.wikipedia.org/wiki/Selection_algorithm

Back to the lightstick

= By using quickselect we can find the 5%
largest (or smallest) element

— This allows us to efficiently compute the
trimmed mean

@ Cornell University

What about the median?

= Another way to avoid our bad data points:
— Use the median instead of the mean

12 kids, avg. weight= 40 Ibs 1 Arnold, weight = 236 Ibs
Qoo | | | &>
o 7 50 _ 100 150 200 250
Median: 40 lbs Mean: (12 x 40 + 236) / 13 = 55 Ibs

@ Cornell University

Median vector

= Mean, like median, was defined in 1D
— For a 2D mean we used the centroid

— Mean of x coordinates and y coordinates
separately

e Call this the “mean vector”

— Does this work for the median also?

@ Cornell University

What i1s the median vector?

= |In 1900, statisticians wanted
to find the “geographical

T 2 R e e s o e s oo -

=

Erazefas Ko1s 5 ites center of the population” to
————— guantify westward shift

= Why not the centroid?

s SPACE BAR to centinue — Someone be|ng born in San

Francisco changes the centroid
much more than someone being
born in Indiana

= \What about the “median
vector”?

— Take the median of the x
coordinates and the median of the
y coordinates separately

i@j@ Cornell University
RS

Position of the Geographic Center of Area, Mean and Median Centers of Population: 2000

@ Geographic Center of Area
A Mean Center of Population
=t Median Center of Poputation

— — Median Line

-
Pl

Mo

3 >

5. Department of Commerce Economics and Statstcs Administration U5, Census Bureau Prepared by the Geography Division

Median vector

= A little thought will show you that this
doesn’t really make a lot of sense

— Nonetheless, It’s a common solution, and we
will implement it for CS1114

— In situations like ours it works pretty well
= |t’s almost never an actual datapoint
= |t depends upon rotations!

i@j@ Cornell University
RS

Can we do even better?

= None of what we described works that well
If we have widely scattered red pixels

— And we can’t figure out lightstick orientation

= |s it possible to do even better?
— Yesl!

= We will focus on:
— Finding “blobs” (connected red pixels)
— Summarizing the shape of a blob
— Computing orientation from this

= We'll need brand new tricks!

i@j@ Cornell University
RS

20055 210250 L
0.33.209.29 0. 33 208

07.205.230,105
07.205.2308) 23

207.205. 2444 b5 230110
07.209.230.128

.33

G&78.151.110

07 s 2891 07.205.230.117
07.205.280.165 V), || 07.205.24

07.205.230.174
07.205

	Sorting and selection – Part 2
	Administrivia
	Recap from last time: sorting
	Quicksort
	Quicksort: worst case
	Quicksort: best case
	How many comparisons?�(best case)
	How many comparisons?�(best case)
	How many comparisons?�(best case)
	Can we expect to be lucky?
	Back to the selection problem
	Slide Number 12
	Finding the second best team
	Quicksort Tournament
	Modifying quicksort to select
	Modifying quicksort to select – Finding the 2nd best team
	Modifying quicksort to select – Finding the 32nd best team
	Find kth largest element in A�(< than k-1 others)
	Modified quicksort
	What is the running time of:
	Quickselect – “medium” case
	How many comparisons?�(“medium” case)
	How many comparisons?�(“medium” case)
	Quickselect
	Quickselect
	Back to the lightstick
	What about the median?
	Median vector
	What is the median vector?
	Slide Number 30
	Median vector
	Can we do even better?
	Next time: graphs

