
Sorting and selection

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu

2

Administrivia

Assignment 1 due Friday by 5pm
– Please sign up for a demo slot using CMS
– If you don’t yet have a 100R account, please

let me know

Assignment 2 out on Friday

Quiz 2 next Thursday 2/12
– Coverage through next Tuesday
– Closed book / closed note

Administrivia

More robots will be working soon
– If all of the working ones are in use, you can

test your code with the robot arena

3

Logical operators
&& -- logical “and”
|| -- logical “or”

if (x == 1 && y == 2) || z == 3
% do something interesting

else
% do something else

end

4

What’s the difference
between…

A(i) = A(i) + 2i;
A(i) = A(i) + 2 * i;

5

Plotting in Matlab

6

Recap from last time

We looked at the “trimmed mean” problem for
locating the lightstick
– Remove 5% of points on all sides, find centroid

This is a version of a more general problem:
– Finding the kth largest element in an array
– Also called the “selection” problem

We considered an algorithm that repeatedly
removes the largest element
– How fast is this algorithm?

7

8

Recap from last time

Big-O notation allows us to reason about
speed without worrying about
– Getting lucky on the input
– Depending on our hardware

Big-O of repeatedly removing the biggest
element?
– Worst-case (k = n/2, i.e., median) is

quadratic, O(n2)

9

Classes of algorithm speed

Constant time algorithms, O(1)
– Do not depend on the input size
– Example: find the first element

Linear time algorithms, O(n)
– Constant amount of work for every input item
– Example: find the largest element

Quadratic time algorithms, O(n2)
– Linear amount of work for every input item
– Example: repeatedly removing max element

10

How to do selection better?
If our input were sorted, we can do better
– Given 100 numbers in increasing order, we can

easily figure out the 5th biggest or smallest

Very important principle! (encapsulation)
– Divide your problem into pieces

• One person (or group) can provide sort
• The other person can use sort

– As long as both agree on what sort does, they
can work independently

– Can even “upgrade” to a faster sort

11

How to sort?

Sorting is an ancient problem,
by the standards of CS
– First important “computer” sort

used for 1890 census, by
Hollerith (the 1880 census took 8
years, 1890 took just one)

There are many sorting
algorithms

How to sort?

Given an array of numbers:
[10 2 5 30 4 8 19 102 53 3]

How can we produce a sorted array?
[2 3 4 5 8 10 19 30 53 102]

12

How to sort?
A concrete version of the problem
– Suppose I want to sort all actors by height

– How do I do this?

13

…

Sorting, 1st attempt
Idea: Given n actors

1. Find the shortest actor (D. Devito), put him first
2. Find the shortest actor in the remaining group, put

him/her second

… Repeat …

n. Find the shortest actor in the remaining group (one
left), put him/her last

14

Sorting, 1st attempt

What does this remind you of?
This is called selection sort
After round k, the first k entries are sorted

15

Algorithm 1

1. Find the shortest actor put him first
2. Find the shortest actor in the remaining group,

put him/her second

… Repeat …

n. Find the shortest actor in the remaining group
put him/her last

Selection sort – pseudocode

16

function [A] = selection_sort(A)
% Returns a sorted version of array A
% by applying selection sort
% Uses in place sorting
n = length(A);
for i = 1:n

% Find the smallest element in A(i:n)
% Swap that element with something (what?)

end

Filling in the gaps

% Find the smallest element in A(i:n)

We pretty much know how to do this

m = 10000; m_index = -1;
for j in i:n

if A(j) < m
m = A(j); m_index = j;

end
end

17

[10 13 41 6 51 11]
% After round 1,
% m = 6, m_index = 4

Filling in the gaps
% Swap the smallest element with something
% Swap element A(m_index) with A(i)

A(i) = A(m_index);
A(m_index) = A(i);

tmp = A(i);
A(i) = A(m_index);
A(m_index) = tmp;

18

[10 13 41 6 51 11]

[6 13 41 10 51 11]

Putting it all together
function [A] = selection_sort(A)
% Returns a sorted version of array A
len = length(A);
for i = 1:len

% Find the smallest element in A(i:len)
m = 10000; m_index = -1;
for j in i:n

if A(j) < m
m = A(j); m_index = j;

end
end
% Swap element A(m_index) with A(i)
tmp = A(i);
A(i) = A(m_index);
A(m_index) = tmp;

end

19

Example of selection sort

20

[10 13 41 6 51 11]

[6 13 41 10 51 11]

[6 10 41 13 51 11]

[6 10 11 13 51 41]

[6 10 11 13 51 41]

[6 10 11 13 41 51]

[6 10 11 13 41 51]

Speed of selection sort
Let n be the size of the array
How fast is selection sort?

O(1) O(n) O(n2) ?

How many comparisons (<) does it do?
First iteration: n comparisons
Second iteration: n – 1 comparisons

…
nth iteration: 1 comparison

21

Speed of selection sort
Total number of comparisons:

n + (n – 1) + (n – 2) + … + 1

Work grows in proportion to n2

selection sort is O(n2)

22

∑
=

+
=

n

i

nni
1 2

)1(

Is this the best we can do?
Let’s try a different approach
Suppose we tell all the actors
– shorter than 5.5’ to move to the left side of the room

and all actors
– taller than 5.5’ to move to the right side of the room
– (actors who are exactly 5.5’ move to the middle)

23

[6.0 5.4 5.5 6.2 5.3 5.0 5.9]

[5.4 5.3 5.0 5.5 6.0 6.2 5.9]

Sorting, 2nd attempt

Not quite done, but it’s a start
We’ve put every element on the correct side of
5.5’ (the pivot)
What next?
Do this again on each side: ask shorter group to
pivot on (say) 5.3’, taller group to pivot on 6.0’
Divide and conquer

24

[6.0 5.4 5.5 6.2 5.3 5.0 5.9]

[5.4 5.3 5.0 5.5 6.0 6.2 5.9]
< 5.5’ > 5.5’

How do we select the pivot?

How did we know to select 5.5’ as the pivot?
Answer: average-ish human height
In general, we might not know a good value
Solution: just pick some value from the
array (say, the first one)

25

26

Quicksort

This algorithm is called quicksort

1. Pick an element (pivot)
2. Partition the array into elements < pivot

and > pivot
3. Quicksort these smaller arrays separately

Quicksort example

27

[10 13 41 6 51 11 3]

[6 3 10 13 41 51 11]

[6 3] 10 [13 41 51 11]

[3 6] 10 [11 13 41 51]

[3] 6 10 [11] 13 [41 51]

Select pivot

Partition

Select pivot

Partition

3 6 10 11 13 [41 51]

3 6 10 11 13 41 [51]

3 6 10 11 13 41 51

6

10

13

41Select pivot

Partition

Select pivot

Done

Quicksort – pseudo-code
function [S] = quicksort(A)
% Sort an array using quicksort
n = length(A);
if n <= 1

S = A; return;
end

pivot = A(1); % Choose the pivot
smaller = []; equal = []; larger = [];

% Compare all elements to the pivot:
% Add all elements smaller than pivot to ‘smaller’
% Add all elements equal to pivot to ‘equal’
% Add all elements larger than pivot to ‘larger’

% Sort ‘smaller’ and ‘larger’ separately
smaller = quicksort(smaller); larger = quicksort(larger); % This

is called recursion
S = [smaller equal larger];

28

29

Quicksort and the pivot

There are lots of ways to make quicksort
fast, for example by swapping elements
– We will cover these in section

Quicksort and the pivot

With a bad pivot this algorithm does quite
poorly
– Suppose we happen to always pick the

smallest element of the array?
– What does this remind you of?
– Number of comparisons will be O(n2)

When can the bad case easily happen?

30

	Sorting and selection
	Administrivia
	Administrivia
	Logical operators
	What’s the difference between…
	Plotting in Matlab
	Recap from last time
	Recap from last time
	Classes of algorithm speed
	How to do selection better?
	How to sort?
	How to sort?
	How to sort?
	Sorting, 1st attempt
	Sorting, 1st attempt
	Selection sort – pseudocode
	Filling in the gaps
	Filling in the gaps
	Putting it all together
	Example of selection sort
	Speed of selection sort
	Speed of selection sort
	Is this the best we can do?
	Sorting, 2nd attempt
	How do we select the pivot?
	Quicksort
	Quicksort example
	Quicksort – pseudo-code
	Quicksort and the pivot
	Quicksort and the pivot

