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Administrivia

Assignment 1 due Friday by 5pm
– Please sign up for a demo slot using CMS
– If you don’t yet have a 100R account, please 

let me know

Assignment 2 out on Friday

Quiz 2 next Thursday 2/12
– Coverage through next Tuesday
– Closed book / closed note



Administrivia

More robots will be working soon
– If all of the working ones are in use, you can 

test your code with the robot arena
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Logical operators
&& -- logical “and”
|| -- logical “or”

if (x == 1 && y == 2) || z == 3
% do something interesting

else
% do something else

end
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What’s the difference 
between…

A(i) = A(i) + 2i; 
A(i) = A(i) + 2 * i;
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Plotting in Matlab
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Recap from last time

We looked at the “trimmed mean” problem for 
locating the lightstick
– Remove 5% of points on all sides, find centroid

This is a version of a more general problem:
– Finding the kth largest element in an array
– Also called the “selection” problem

We considered an algorithm that repeatedly 
removes the largest element
– How fast is this algorithm?
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Recap from last time

Big-O notation allows us to reason about 
speed without worrying about
– Getting lucky on the input
– Depending on our hardware

Big-O of repeatedly removing the biggest 
element?
– Worst-case (k = n/2, i.e., median) is 

quadratic, O(n2)
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Classes of algorithm speed

Constant time algorithms, O(1)
– Do not depend on the input size
– Example: find the first element

Linear time algorithms, O(n)
– Constant amount of work for every input item
– Example: find the largest element

Quadratic time algorithms, O(n2)
– Linear amount of work for every input item
– Example: repeatedly removing max element
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How to do selection better?
If our input were sorted, we can do better
– Given 100 numbers in increasing order, we can 

easily figure out the 5th biggest or smallest

Very important principle! (encapsulation)
– Divide your problem into pieces

• One person (or group) can provide sort
• The other person can use sort

– As long as both agree on what sort does, they 
can work independently

– Can even “upgrade” to a faster sort
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How to sort?

Sorting is an ancient problem, 
by the standards of CS
– First important “computer” sort 

used for 1890 census, by 
Hollerith (the 1880 census took 8 
years, 1890 took just one)

There are many sorting 
algorithms



How to sort?

Given an array of numbers:
[10 2 5 30 4 8 19 102 53 3]

How can we produce a sorted array?
[2 3 4 5 8 10 19 30 53 102]
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How to sort?
A concrete version of the problem
– Suppose I want to sort all actors by height

– How do I do this?
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…



Sorting, 1st attempt
Idea: Given n actors

1. Find the shortest actor (D. Devito), put him first
2. Find the shortest actor in the remaining group, put 

him/her second

… Repeat …

n. Find the shortest actor in the remaining group (one 
left), put him/her last
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Sorting, 1st attempt

What does this remind you of?
This is called selection sort
After round k, the first k entries are sorted
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Algorithm 1

1. Find the shortest actor put him first
2. Find the shortest actor in the remaining group, 

put him/her second

… Repeat …

n. Find the shortest actor in the remaining group 
put him/her last



Selection sort – pseudocode
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function [ A ] = selection_sort(A)
% Returns a sorted version of array A
%   by applying selection sort
%   Uses in place sorting
n = length(A);
for i = 1:n

% Find the smallest element in A(i:n)
% Swap that element with something (what?)

end



Filling in the gaps

% Find the smallest element in A(i:n)

We pretty much know how to do this

m = 10000; m_index = -1;
for j in i:n

if A(j) < m
m = A(j); m_index = j;

end
end
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[ 10 13 41 6 51 11 ]
% After round 1,
%  m = 6, m_index = 4



Filling in the gaps
% Swap the smallest element with something
% Swap element A(m_index) with A(i)

A(i) = A(m_index);
A(m_index) = A(i);

tmp = A(i);
A(i) = A(m_index);
A(m_index) = tmp;
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[ 10 13 41 6 51 11 ]

[ 6 13 41 10 51 11 ]



Putting it all together
function [ A ] = selection_sort(A)
% Returns a sorted version of array A
len = length(A);
for i = 1:len

% Find the smallest element in A(i:len)
m = 10000; m_index = -1;
for j in i:n

if A(j) < m
m = A(j); m_index = j;

end
end
% Swap element A(m_index) with A(i)
tmp = A(i);
A(i) = A(m_index);
A(m_index) = tmp;

end
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Example of selection sort
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[ 10 13 41 6 51 11 ]

[ 6 13 41 10 51 11 ]

[ 6 10 41 13 51 11 ]

[ 6 10 11 13 51 41 ]

[ 6 10 11 13 51 41 ]

[ 6 10 11 13 41 51 ]

[ 6 10 11 13 41 51 ]



Speed of selection sort
Let n be the size of the array
How fast is selection sort?  

O(1)     O(n)    O(n2)   ?

How many comparisons (<) does it do?
First iteration: n comparisons
Second iteration: n – 1 comparisons

…
nth iteration: 1 comparison
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Speed of selection sort
Total number of comparisons:

n + (n – 1) + (n – 2) + … + 1

Work grows in proportion to n2

selection sort is O(n2)

22

∑
=

+
=

n

i

nni
1 2

)1(



Is this the best we can do?
Let’s try a different approach
Suppose we tell all the actors 
– shorter than 5.5’ to move to the left side of the room

and all actors 
– taller than 5.5’ to move to the right side of the room 
– (actors who are exactly 5.5’ move to the middle)
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[ 6.0 5.4  5.5 6.2 5.3  5.0  5.9 ]

[ 5.4  5.3  5.0  5.5 6.0 6.2 5.9 ]



Sorting, 2nd attempt

Not quite done, but it’s a start
We’ve put every element on the correct side of 
5.5’ (the pivot)
What next?
Do this again on each side: ask shorter group to 
pivot on (say) 5.3’, taller group to pivot on 6.0’
Divide and conquer
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[ 6.0 5.4  5.5 6.2 5.3  5.0  5.9 ]

[ 5.4  5.3  5.0  5.5 6.0 6.2 5.9 ]
< 5.5’ > 5.5’



How do we select the pivot?

How did we know to select 5.5’ as the pivot?
Answer: average-ish human height
In general, we might not know a good value
Solution: just pick some value from the 
array (say, the first one)
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Quicksort

This algorithm is called quicksort

1. Pick an element (pivot)
2. Partition the array into elements < pivot 

and > pivot
3. Quicksort these smaller arrays separately



Quicksort example
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[ 10 13 41 6 51 11 3 ]

[ 6 3 10 13 41 51 11 ]

[ 6 3 ] 10 [ 13 41 51 11 ]

[ 3 6 ] 10 [ 11 13 41 51 ]

[ 3 ] 6 10 [ 11 ] 13 [ 41 51 ]

Select pivot

Partition

Select pivot

Partition

3 6 10 11 13 [ 41 51 ]

3 6 10 11 13 41 [ 51 ]

3 6 10 11 13 41 51

6

10

13

41Select pivot

Partition

Select pivot

Done



Quicksort – pseudo-code
function [ S ] = quicksort(A)
% Sort an array using quicksort
n = length(A);
if n <= 1

S = A; return;
end

pivot = A(1);  % Choose the pivot
smaller = []; equal = []; larger = [];

% Compare all elements to the pivot: 
%    Add all elements smaller than pivot to ‘smaller’
%    Add all elements equal to pivot to ‘equal’
%    Add all elements larger than pivot to ‘larger’

% Sort ‘smaller’ and ‘larger’ separately
smaller = quicksort(smaller); larger = quicksort(larger); % This 

is called recursion
S = [ smaller equal larger ];
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Quicksort and the pivot

There are lots of ways to make quicksort
fast, for example by swapping elements
– We will cover these in section



Quicksort and the pivot

With a bad pivot this algorithm does quite 
poorly
– Suppose we happen to always pick the 

smallest element of the array?
– What does this remind you of?
– Number of comparisons will be O(n2)

When can the bad case easily happen?
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