Finding Red Pixels — Part 2

Prof. Noah Snavely
CS1114
http://cslll14.cs.cornell.edu

gejy Cornell University
s/ Computer Science

Administrivia

* You should all have access to the Upson
317 lab, CSUG accounts

— If not, please let me know
= Your card should now unlock Upson 319

@ Cornell University

Administrivia

= Assighment 1 posted, due next Friday by
opm
— You should have all gotten email from me
announcing the assignment

= Quiz 1 on Thursday
= No evening lecture tonight

@ Cornell University

Administrivia

= Office hours are posted on the website

CS1114 Office Hours
_Today |EB I Jan 18 - 24 2009 ~ @ Print Week Month Agenda [+

Sun 118 Mon 1119 Tue 120 Wed 1/21 Thu 1/22 Fri1/23 Sat 1/24

[~ |

9am

10am pEET 10:00am
Neil Aaron
11am

12pm

1pm

2pm

3pm

4pm

4:20pm
Neil

6pm

7pm
=l

Events shown in time zone: Eastern Time | Gougle Ca..enﬂar:

Cornell University

Correction from last time
= [10 30 40 106 123 8 49 58 112 145 16 53]

D(1) = D(1) + 20;

D(2) = D(2) + 20;

D(3) = D(3) + 20; -
D(4) = D(4) + 20- for 1 = 1:12]
D(5) =D(5) +20; BE» D(i) = D(i) + 20;
D(6) = D(6) + 20; end

D(7) = D(7) + 20;

D(8) = D(8) + 20: |

D(9) = D(9) + 20; y
D(10) = D(10) + 20; D=D + 20-
D(11) = D(11) + 20; ’
D(12) = D(12) + 20; = “Vectorized” code

= Usually much faster than loops

= But please use for loops for
assignment 1

@E Cornell University

Why 256 intensity values?

8-bit intensity (2™8 = 256)

5-bit intensity (2™5 = 32)

5-bit intensity with noise

@ Cornell University

Why 256 intensity values?

ARMAMENT

5 169LE

|
AGM 65 @ we-u.e \ o= P
maverick [l — R

- 1970LE

MK 2% .
____2000LE LOW DRAGIN

DURANDAL —.

G G, SIR.
WE FRE ~CONFIGURED HER LAST NIGHT.

T TOTAL WEIGHT: 22503

4-color CGA display

Today’s (typical) displays:
256 * 256 * 256 = 16,777,216 colors

@ Cornell University

How many black pixels?

nzeros = 0;
[nrows,ncols] = size(D);
for row = l1:nrows
for col = 1:ncols
iIT D(row,col) ==
nzeros = nzeros + 1;
end
end
end

What if we need to execute this code many times?

@ Cornell University

Turning this into a function

function | nzeros] = count_zeros(D)
% Counts the number of zeros In a matrix
nzeros = 0O;
[nrows,ncols] = size(D);
for row = l1:nrows
for col = 1:ncols
1T D(row,col) ==
Nnzeros = nzeros + 1;

end
end Save In a file named count_zeros.m

end count_zeros(]J1 3 4 0 2 0])

@ Cornell University

What about red pixels?

R G B

red(1,1) == 255, green(1,1) == blue(1,1) ==0 .

@ Cornell University

How many red pixels?

img = Imread(“wandl.bmp?);
[red, green, blue] = 1mage rgb(img);
nreds = O;
[nrows,ncols] = Image_size(img);
for row = l:nrows
for col = 1:ncols
i1IT red(row,col) == 255
nreds = nreds + 1;
end
end
end

@ Cornell University

for row = 1l:nrows
for col = 1:ncols
1T red(row,col) == 255
nreds = nreds + 1;
end
end
end

= We’ve counted the red pixels in Matlab
— Can anything go wrong?

@ Cornell University

Are we done?

= Assighment 1: come up with a
thresholding function

i@j@ Cornell University
RS

Finding the lightstick

= We’ve answered the question: Is there a
red light stick?

= But the robot needs to know where it is!

i@j@ Cornell University
RS

Finding the rightmost red pixel

= We can always process the red pixels as
we find them:
right = 0O;
for row = l:nrows
for col = 1:ncols
iIT red(row,col) == 255
right = max(right,col);
end
end
end

@ Cornell University

Finding the lightstick — Take 1

= Compute the bounding box of the red points
= The bounding box of a set of points is the
smallest rectangle containing all the points

— By “rectangle”, | really mean “rectangle aligned
with the X,Y axes”

i@j@ Cornell University
RS

Finding the bounding box

= Each red pixel we find is basically a point
— It has an X and Y coordinate

— Column and row
e Note that Matlab reverses the order

@ Cornell University

What does this tell us?

1.08"f~~~===7======9 Aspect ratio: 2.05/1.08 = 1.9

= Bounding box gives us some information
about the lightstick
Midpoint = rough location
Aspect ratio - rough orientation
(aspect ratio = ratio of width to height)

@ Cornell University

Computing a bounding box

= Two related questions:

— Is this a good idea? Will it tell us reliably
where the light stick is located?

— Can we compute it quickly?

@ Cornell University

Computing a bounding box

= Lots of CS involves trying to find
something that is both useful and efficient

— To do this well, you need a lot of clever ways
to efficiently compute things (i.e., algorithms)

— We’re going to learn a lot of these in CS1114

i@j@ Cornell University
RS

Beyond the bounding box

= Computing a bounding box isn’t hard

— Hint: the right edge is computed by the code
we showed a few slides ago

— You’'ll write this and play with it in A2
= Does it work?

i@j@ Cornell University
RS

Finding the lightstick — Take 2

= How can we make the algorithm more
robust?

— New Iidea: compute the centroid
= Centroid:

(average x-coordinate, average y-coordinate)

— If the points are scattered uniformly, this is
the same as the midpoint of the bounding box

— Average iIs sometimes called the mean
— Centroid = center of mass

@ Cornell University

Computing the centroid?

= We could do everything we want by simply
Iiterating over the image as before

— Testing each pixel to see if it Is red, then doing
something to it

= It’s often easier to iterate over just the
red pixels

= To do this, we will use the Matlab function
called find

i@j@ Cornell University
RS

The find function

X = % x-coords
of nonzero
points

4 Y = % y-coords
of nonzero
thresh points

Your thresholding
function

J [[x,Y] = find(thresh);

i@j@ Cornell University
RS

Using find on images

= We can get the x- and y- coordinates of
every red pixel using find
— Now all we need to do is to compute the
average of these numbers

— We will leave this as a homework exercise
e You might have done this in high school

@ Cornell University

Q: How well does this work?

= A: Still not that well
— One “bad” red point can mess up the mean

= This is a well-known problem

— What is the average weight of the people In
this kindergarten class photo?

@ Cornell University

How well does this work?

--—---r—-—---

@ Cornell University

Types in Matlab

= Different types of numbers:
— Integer (int) {17, 42, -144, .. }
e Sighed
e Unsigned
— 8-bit (uint8) [0 : 255] <
— 16-bit (uint16) [0 : 65,535]

[Default for images]

— Floating point (double) { 3.14, 0.01, -20.5, ... }

@ Cornell University

Converting between types

= Most numbers in Matlab are double by
default (images are an exception)

= Various functions for converting numbers:
double uINnt8 uIntl6

= What happens when we do this:
uitnt8(200) + uInt8(200) % Result = ?

@ Cornell University

Images in different formats

= uInt8 : intensities Iin range [0-255]
= uIntl6 : intensities in range [0-65535]
= double : Intensities in range [0.0-1.0]

i

dou
= dou

dou

mdouble(img) converts an image to

nle format
ole(img) almost converts an image to

nle format

@ Cornell University

For next time

= Attend section tomorrow in the lab

= Reminder: Quiz on Thursday, beginning of
class

@ Cornell University

	Finding Red Pixels – Part 2
	Administrivia
	Administrivia
	Administrivia
	Correction from last time
	Why 256 intensity values?
	Why 256 intensity values?
	How many black pixels?
	Turning this into a function
	What about red pixels?
	How many red pixels?
	Slide Number 12
	Are we done?
	Finding the lightstick
	Finding the rightmost red pixel
	Finding the lightstick – Take 1
	Finding the bounding box
	What does this tell us?
	Computing a bounding box
	Computing a bounding box
	Beyond the bounding box
	Finding the lightstick – Take 2
	Computing the centroid?
	The find function
	Using find on images
	Q: How well does this work?
	How well does this work?
	Types in Matlab
	Converting between types
	Images in different formats
	For next time

