Clustering and greedy algorithms — Part 2

Prof. Noah Snavely CS1114 http://cs1114.cs.cornell.edu

Administrivia

Prelim 3 on Thursday

- Will be comprehensive, but focused on Markov chains and clustering
- Review session Wednesday at 7pm, Upson 315
- Steve will proctor the exam

Administrivia

Final projects

- Due May 8th we'll have sign ups for demo sessions (tentative times: 2-6pm)
- There will be prizes for the best demos!

Next year:

- We hope to offer CS1114 again in SP10
- Possibly will start a fall version as well
- We want you for the course staff!

Life after CS1114?

Computer Science major

AI

Network Science Theory CSE Graphics Systems Security Data-Intensive Programming Languages Human Language Tech.

Reversing a Markov chain?

	Р	\mathbf{Q}	L
Р	0.1	0.2	0.7
Q	0.3	0.1	0.6
L	0.2	0.3	0.5

- What is the probability that a lecture will be followed by a prelim?
- What is the probability that a prelim was preceded by a lecture?
 - Why isn't the answer 0.2?
 - Why isn't the answer 1/3?
 - The real answer is ~ 0.556 or 55.6%

Reversing a Markov chain?

- PQLLQLLPLQQLQLLQLQQPLLQLLLLQPQL
 PLLLQLPQLLLLPPLQLLQPLLQLPLLQPPLLQ
 QPLPLPLPLPLLLPLLLPQPLPQQLQLQLQQP
- The reason why a lecture is more likely to precede a prelim is that lectures are overall more frequent than prelims or quizzes
- You'll learn more in a course on probability / statistics (c.f. Bayes' Rule)

Clustering

Figure from Johan Everts

Cornell University

One approach: k-means

- Suppose we are given n points, and want to find k clusters
- We will find k cluster centers (or means), and assign each of the n points to the nearest cluster center x
 j
 - A *cluster* is a subset of the *n* points, called C_j
 - We'll call each cluster center a mean

How do we define the best k means and clusters?

Optimizing *k*-means

Given input points $x_1, x_2, x_3, \ldots, x_n$, find the clusters C_1, C_2, \ldots, C_k and the cluster centers $\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots, \bar{x}_k$ that minimize

$$\sum_{j=1}^k \sum_{x_i \in C_j} |x_i - \bar{x}_j|^2$$

- The bad news: this is not a convex optimization
- The worse news: it is practically impossible to find the global minimum of this objective function
 - no one has ever come up with an algorithm that is faster than exponential time (and probably never will)
- There are many problems like this (called NP-hard)

Greedy algorithms

- Many CS problems can be solved by repeatedly doing whatever seems best at the moment
 - I.e., without needing a long-term plan
- These are called greedy algorithms
- Example: gradient descent for convex function minimization
- Example: sorting by swapping out-of-order pairs (e.g., bubble sort)
- Example: making change (with US currency)

A greedy method for k-means

- Pick a random point to start with, this is your first cluster mean
- Find the farthest point from the cluster center, this is a new cluster mean
- Find the farthest point from any cluster mean and add it
- Repeat until we have k means
- Assign each point to its closest mean

A greedy method for k-means

- Unfortunately, this doesn't work that well in general
- The answer we get could be much worse than the optimum

The k-centers problem

- Let's look at a related problem: k-centers
- Find k cluster centers that minimize the maximum distance between any point and its nearest center
 - We want the worst point in the worst cluster to still be good (i.e., close to its center)
 - Concrete example: place k hospitals in a city so as to minimize the maximum distance from a hospital to a house

k-centers

What objective function does this correspond to?

Given input points $x_1, x_2, x_3, \ldots, x_n$, find the clusters C_1, C_2, \ldots, C_k and the cluster centers $\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots, \bar{x}_k$ that minimize

$$\max_{j=1}^k \max_{x_i \in C_j} |x_i - \bar{x}_j|^2$$

We can use the same greedy algorithm

An amazing property

- This algorithm gives you a solution that is no worse than twice the optimum
- (k-centers is still NP-hard, just like k-means)
- Such results are sometimes difficult to achieve, and the subject of much research
 - Mostly in CS6810, a bit in CS4820
 - You can't find the optimum, yet you can prove something about it!
- Sometimes related problems (e.g. k-means vs. k-centers) have very different guarantees

Detour into graphs

 We can also associate a *weight* with each edge (e.g., the distance between cities)

Spanning trees

A spanning tree of a graph is a subgraph that
 (a) connects all the vertices and (b) is a tree

Spanning trees

Graph costs

 We'll say the *cost* of a graph is the sum of its edge weights

Cost = 200 + 200 + 100 +400 + 300 + 100 +250 + 150 + 250 =**1950**

Cost = 200 + 400 + 100 +400 + 150 + 250 +100 + 150 + 250 =**2000**

Minimum spanning trees

- We define the *minimum spanning tree* (MST) of a graph as the spanning tree with minimum cost
- (Suppose we want to build the minimum length of track possible while still connecting all the cities.)

Cornell University (Eu

(Eurorail needs to build 1750 mi of track at minimum)

Minimum spanning trees

- How do we find the minimum spanning tree?
- Can you think of a greedy algorithm to do this?

Minimum spanning tree

Greedy algorithm:

Minimum spanning tree

 This greedy algorithm is called Kruskal's algorithm

- Not that simple to prove that it gives the MST
- How many connected components are there after adding the kth edge?

Back to clustering

 We can define the clustering problem on graphs

Clustering using graphs

Clustering → breaking apart the graph by cutting long edges

Which edges do we break?

Spacing as a clustering metric

- Another objective function for clustering:
 - Maximize the minimum distance between clusters
 - (Called the *spacing*.)

Cool fact

- We compute the clusters with the maximum spacing during MST!
- To compute the best k clusters, just stop MST construction k-1 edges early

2 clusters with max spacing (=400)

Proof of cool fact

- Suppose this wasn't true then someone could give us a different clustering with a bigger spacing
- Let C^{*} be our MST clustering, and let C be the purportedly better one
- There must be two nodes u and v in different clusters in C but in the same cluster in C*
- There's a path between u and v in C*, and at some point this path crosses a cluster boundary in C

Proof of cool fact

- Let this boundary-crossing edge be called e
- We know that weight(e) ≤ the next edge we would add to the MST (why?)
- \rightarrow weight(e) \leq spacing of C^*
- \rightarrow spacing of $C \leq$ spacing of C^*
- So C wasn't really better after all...

Pictorial proof

Conclusions

- Greedy algorithms work sometimes (e.g., with MST)
- Some clustering objective functions are easier to optimize than others:
 - *k*-means \rightarrow very hard
 - k-centers → very hard, but we can use a greedy algorithm to get within a factor of two of the best answer
 - maximum spacing → very easy! Just do MST and stop early

Next time

- Make sure to fill in course evals online (2 pts) <u>http://www.engineering.cornell.edu/CourseEval/</u>
- Review session tomorrow, 7pm, Upson 315
- Prelim on Thursday

