
Clustering and greedy algorithms
— Part 2

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu

Administrivia

Prelim 3 on Thursday
– Will be comprehensive, but focused on Markov

chains and clustering
– Review session Wednesday at 7pm, Upson 315
– Steve will proctor the exam

2

Administrivia
Final projects
– Due May 8th – we’ll have sign ups for demo

sessions (tentative times: 2-6pm)
– There will be prizes for the best demos!

Next year:
– We hope to offer CS1114 again in SP10
– Possibly will start a fall version as well
– We want you for the course staff!

3

Life after CS1114?

4

Computer Science major

Reversing a Markov chain?

What is the probability that a lecture will be
followed by a prelim?

What is the probability that a prelim was
preceded by a lecture?
– Why isn’t the answer 0.2?
– Why isn’t the answer 1/3?
– The real answer is ~0.556 or 55.6%

5

Reversing a Markov chain?
PQLLQLLPLQQLQLLQLQQPLLQLLLLLLQPQL
PLLLQLPQLLLLPPLQLLLQPLLQLPLLQPPLLQ
QPLPLPLPLPLLLPLLLPQPLPQQLQLQLLQQP

The reason why a lecture is more likely to
precede a prelim is that lectures are
overall more frequent than prelims or
quizzes
You’ll learn more in a course on probability
/ statistics (c.f. Bayes’ Rule)

6

7

Clustering

Figure from Johan Everts

One approach: k-means

Suppose we are given n points, and want
to find k clusters
We will find k cluster centers (or means),
and assign each of the n points to the
nearest cluster center
– A cluster is a subset of the n points, called
– We’ll call each cluster center a mean

8

k-means

How do we define the best k means and
clusters?

9

Legend
- centers (means)

- clusters

Optimizing k-means

The bad news: this is not a convex optimization
The worse news: it is practically impossible to find
the global minimum of this objective function
– no one has ever come up with an algorithm that is faster

than exponential time (and probably never will)

There are many problems like this (called NP-hard)

10

11

Greedy algorithms
Many CS problems can be solved by
repeatedly doing whatever seems best at the
moment
– I.e., without needing a long-term plan

These are called greedy algorithms
Example: gradient descent for convex
function minimization
Example: sorting by swapping out-of-order
pairs (e.g., bubble sort)
Example: making change (with US currency)

12

A greedy method for k-means

Pick a random point to start with, this is
your first cluster mean
Find the farthest point from the cluster
center, this is a new cluster mean
Find the farthest point from any cluster
mean and add it
Repeat until we have k means
Assign each point to its closest mean

A greedy method for k-means

13

A greedy method for k-means

Unfortunately, this doesn’t work that well
in general

The answer we get could be much worse
than the optimum

14

The k-centers problem

Let’s look at a related problem: k-centers
Find k cluster centers that minimize the
maximum distance between any point and
its nearest center
– We want the worst point in the worst cluster to

still be good (i.e., close to its center)
– Concrete example: place k hospitals in a city

so as to minimize the maximum distance from
a hospital to a house

15

k-centers

16

What objective function does this
correspond to?

We can use the same greedy algorithm

17

An amazing property
This algorithm gives you a solution that is no
worse than twice the optimum
(k-centers is still NP-hard, just like k-means)
Such results are sometimes difficult to
achieve, and the subject of much research
– Mostly in CS6810, a bit in CS4820
– You can’t find the optimum, yet you can prove

something about it!

Sometimes related problems (e.g. k-means
vs. k-centers) have very different guarantees

Detour into graphs

We can also associate a weight with each edge
(e.g., the distance between cities)

18

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100

400

300

200
150

100

100
250

150
250

Spanning trees
A spanning tree of a graph is a subgraph that
(a) connects all the vertices and (b) is a tree

19Spanning trees

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100
400

300

200
150

100

100

250

150
250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100

300

200
100

250

150
250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100
400

150
100

250

150
250Q: How many edges are there in a

spanning tree on n vertices?

Graph costs
We’ll say the cost of a graph is the sum of
its edge weights

20

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100

300

200
100

250

150
250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100
400

150
100

250

150
250

Cost = 200 + 200 + 100 +
400 + 300 + 100 +
250 + 150 + 250 = 1950

Cost = 200 + 400 + 100 +
400 + 150 + 250 +
100 + 150 + 250 = 2000

Minimum spanning trees
We define the minimum spanning tree (MST) of a
graph as the spanning tree with minimum cost
(Suppose we want to build the minimum length
of track possible while still connecting all the
cities.)

21

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100
400

300

200
150

100

100

250

150
250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

100
400

200
100

100

250

150
250

MST: Cost = 1750

(Eurorail needs to build 1750 mi of track at minimum)

Minimum spanning trees
How do we find the minimum spanning
tree?
Can you think of a greedy algorithm to do
this?

22

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100
400

300

200
150

100

100

250

150
250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg

Minimum spanning tree
Greedy algorithm:

23

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100
400

300

200
150

100

100

250

150
250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

100
400

200
100

100

250

150
250

Minimum spanning tree
This greedy algorithm is called Kruskal’s
algorithm

Not that simple to prove that it gives the MST
How many connected components are there after adding
the kth edge?

24

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100
400

300

200
150

100

100

250

150
250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

100
400

200
100

100

250

150
250

Back to clustering
We can define the clustering problem on
graphs

25

12

9

4

5
7

10

11
8

48

Clustering using graphs
Clustering breaking apart the graph by
cutting long edges

Which edges do we break?
26

12

9

4

5
7

10

11
8

48

Spacing as a clustering metric
Another objective function for clustering:
– Maximize the minimum distance between

clusters
– (Called the spacing.)

27

spacing

Cool fact
We compute the clusters with the
maximum spacing during MST!
To compute the best k clusters, just stop
MST construction k-1 edges early

28

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

400

100
400

300

200
150

100

100

250

150
250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples Warsaw

Hamburg
200

100

200
100

100

250

150
250

2 clusters with max spacing (=400)

400

Proof of cool fact
Suppose this wasn’t true – then someone
could give us a different clustering with a
bigger spacing
Let C* be our MST clustering, and let C be
the purportedly better one
There must be two nodes u and v in
different clusters in C but in the same
cluster in C*

There’s a path between u and v in C*, and
at some point this path crosses a cluster
boundary in C

29

Proof of cool fact
Let this boundary-crossing edge be called e

We know that weight(e) ≤ the next edge we
would add to the MST (why?)

weight(e) ≤ spacing of C*

spacing of C ≤ spacing of C*

So C wasn’t really better after all…

30

Pictorial proof

31

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

200

100

200
100

100

250

150

250

C

400

Conclusions
Greedy algorithms work sometimes (e.g.,
with MST)

Some clustering objective functions are
easier to optimize than others:
– k-means very hard
– k-centers very hard, but we can use a

greedy algorithm to get within a factor of two
of the best answer

– maximum spacing very easy! Just do MST
and stop early

32

Next time

Make sure to fill in course evals online (2 pts)
http://www.engineering.cornell.edu/CourseEval/

Review session tomorrow, 7pm, Upson 315

Prelim on Thursday

33

http://www.engineering.cornell.edu/CourseEval/

	Clustering and greedy algorithms� — Part 2
	Administrivia
	Administrivia
	Life after CS1114?
	Reversing a Markov chain?
	Reversing a Markov chain?
	Clustering
	One approach: k-means
	k-means
	Optimizing k-means
	Greedy algorithms
	A greedy method for k-means
	A greedy method for k-means
	A greedy method for k-means
	The k-centers problem
	k-centers
	An amazing property
	Detour into graphs
	Spanning trees
	Graph costs
	Minimum spanning trees
	Minimum spanning trees
	Minimum spanning tree
	Minimum spanning tree
	Back to clustering
	Clustering using graphs
	Spacing as a clustering metric
	Cool fact
	Proof of cool fact
	Proof of cool fact
	Pictorial proof
	Conclusions
	Next time

