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Administrivia

Prelim 3 on Thursday
– Will be comprehensive, but focused on Markov 

chains and clustering
– Review session Wednesday at 7pm, Upson 315
– Steve will proctor the exam
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Administrivia
Final projects
– Due May 8th – we’ll have sign ups for demo 

sessions (tentative times: 2-6pm)
– There will be prizes for the best demos!

Next year:
– We hope to offer CS1114 again in SP10
– Possibly will start a fall version as well
– We want you for the course staff!
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Life after CS1114?
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Computer Science major



Reversing a Markov chain?

What is the probability that a lecture will be 
followed by a prelim?

What is the probability that a prelim was 
preceded by a lecture?
– Why isn’t the answer  0.2?
– Why isn’t the answer 1/3?
– The real answer is ~0.556 or 55.6%
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Reversing a Markov chain?
PQLLQLLPLQQLQLLQLQQPLLQLLLLLLQPQL
PLLLQLPQLLLLPPLQLLLQPLLQLPLLQPPLLQ
QPLPLPLPLPLLLPLLLPQPLPQQLQLQLLQQP

The reason why a lecture is more likely to 
precede a prelim is that lectures are 
overall more frequent than prelims or 
quizzes
You’ll learn more in a course on probability 
/ statistics (c.f. Bayes’ Rule)
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Clustering

Figure from Johan Everts



One approach: k-means

Suppose we are given n points, and want 
to find k clusters
We will find k cluster centers (or means), 
and assign each of the n points to the 
nearest cluster center
– A cluster is a subset of the n points, called 
– We’ll call each cluster center a mean
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k-means

How do we define the best k means and 
clusters?
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Legend
- centers (means)

- clusters



Optimizing k-means

The bad news: this is not a convex optimization
The worse news: it is practically impossible to find 
the global minimum of this objective function 
– no one has ever come up with an algorithm that is faster 

than exponential time (and probably never will)

There are many problems like this (called NP-hard)
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Greedy algorithms
Many CS problems can be solved by 
repeatedly doing whatever seems best at the 
moment
– I.e., without needing a long-term plan

These are called greedy algorithms
Example: gradient descent for convex 
function minimization
Example: sorting by swapping out-of-order 
pairs (e.g., bubble sort)
Example: making change (with US currency)
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A greedy method for k-means

Pick a random point to start with, this is 
your first cluster mean
Find the farthest point from the cluster 
center, this is a new cluster mean
Find the farthest point from any cluster 
mean and add it
Repeat until we have k means
Assign each point to its closest mean



A greedy method for k-means
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A greedy method for k-means

Unfortunately, this doesn’t work that well 
in general

The answer we get could be much worse 
than the optimum
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The k-centers problem

Let’s look at a related problem: k-centers
Find k cluster centers that minimize the 
maximum distance between any point and 
its nearest center
– We want the worst point in the worst cluster to 

still be good (i.e., close to its center)
– Concrete example: place k hospitals in a city 

so as to minimize the maximum distance from 
a hospital to a house
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k-centers
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What objective function does this 
correspond to?

We can use the same greedy algorithm
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An amazing property
This algorithm gives you a solution that is no 
worse than twice the optimum
(k-centers is still NP-hard, just like k-means)
Such results are sometimes difficult to 
achieve, and the subject of much research
– Mostly in CS6810, a bit in CS4820
– You can’t find the optimum, yet you can prove 

something about it!

Sometimes related problems (e.g. k-means 
vs. k-centers) have very different guarantees



Detour into graphs

We can also associate a weight with each edge 
(e.g., the distance between cities)
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Spanning trees
A spanning tree of a graph is a subgraph that     
(a) connects all the vertices and (b) is a tree
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Graph costs
We’ll say the cost of a graph is the sum of 
its edge weights
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Minimum spanning trees
We define the minimum spanning tree (MST) of a 
graph as the spanning tree with minimum cost
(Suppose we want to build the minimum length 
of track possible while still connecting all the 
cities.)
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Minimum spanning trees
How do we find the minimum spanning 
tree?
Can you think of a greedy algorithm to do 
this?
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Minimum spanning tree
Greedy algorithm:
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Minimum spanning tree
This greedy algorithm is called Kruskal’s
algorithm

Not that simple to prove that it gives the MST
How many connected components are there after adding 
the kth edge?
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Back to clustering
We can define the clustering problem on 
graphs
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Clustering using graphs
Clustering breaking apart the graph by 
cutting long edges

Which edges do we break?
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Spacing as a clustering metric
Another objective function for clustering:
– Maximize the minimum distance between 

clusters
– (Called the spacing.)
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spacing



Cool fact
We compute the clusters with the 
maximum spacing during MST!
To compute the best k clusters, just stop 
MST construction k-1 edges early
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Proof of cool fact
Suppose this wasn’t true – then someone 
could give us a different clustering with a 
bigger spacing
Let C* be our MST clustering, and let C be 
the purportedly better one
There must be two nodes u and v in 
different clusters in C but in the same 
cluster in C*

There’s a path between u and v in C*, and 
at some point this path crosses a cluster 
boundary in C

29



Proof of cool fact
Let this boundary-crossing edge be called e

We know that weight(e) ≤ the next edge we 
would add to the MST (why?)

weight(e) ≤ spacing of C*

spacing of C ≤ spacing of C*

So C wasn’t really better after all…
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Pictorial proof
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Conclusions
Greedy algorithms work sometimes (e.g., 
with MST)

Some clustering objective functions are 
easier to optimize than others:
– k-means very hard
– k-centers very hard, but we can use a 

greedy algorithm to get within a factor of two 
of the best answer

– maximum spacing very easy!  Just do MST 
and stop early
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Next time

Make sure to fill in course evals online (2 pts)
http://www.engineering.cornell.edu/CourseEval/

Review session tomorrow, 7pm, Upson 315

Prelim on Thursday

33

http://www.engineering.cornell.edu/CourseEval/

	Clustering and greedy algorithms�   — Part 2
	Administrivia
	Administrivia
	Life after CS1114?
	Reversing a Markov chain?
	Reversing a Markov chain?
	Clustering
	One approach: k-means
	k-means
	Optimizing k-means
	Greedy algorithms
	A greedy method for k-means
	A greedy method for k-means
	A greedy method for k-means
	The k-centers problem
	k-centers
	An amazing property
	Detour into graphs
	Spanning trees
	Graph costs
	Minimum spanning trees
	Minimum spanning trees
	Minimum spanning tree
	Minimum spanning tree
	Back to clustering
	Clustering using graphs
	Spacing as a clustering metric
	Cool fact
	Proof of cool fact
	Proof of cool fact
	Pictorial proof
	Conclusions
	Next time

