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Administrivia
A5 Part 1 due tomorrow by 5pm (please 
sign up for a demo slot)
Part 2 will be due in two weeks (4/17)

Prelim 2 on Tuesday 4/7 (in class)
– Covers everything since Prelim 1, including:
– Polygons, convex hull, interpolation, image 

transformation, feature-based object 
recognition, solving for affine transformations

– Review session on Monday, 7pm, Upson 315

2



Image transformations

What happens when the image moves 
outside the image boundary?
Previously, we tried to fix this by changing 
the transformation:
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Image transformations
Another approach:
– We can compute where the image moves to

• in particular the minimum row and the minimum 
column

• as well as the width and height of the output 
image (e.g., max_col – min_col + 1)

– Then we can “shift” the image so it fits inside 
the output image

– This could be done with another 
transformation, but could also just 
add/subtract min_col and min_row
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Shifting the image

need to shift (row, col) by adding (min_row, min_col), 
before applying T-1
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(30, -10)

(-15, -50)

matrix entry (1,1)



Convex hulls
If I have 100 points, and 10 are on the 
convex hull
If I add 1 more point
– the max # of points on the convex hull is 11
– the min # of points on the convex hull is 3
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Object recognition
1. Detect features in two images
2. Match features between the two images

3. Select three matches at random
4. Solve for the affine transformation T
5. Count the number of inlier matches to T
6. If T is has the highest number of inliers so 

far, save it
7. Repeat 3-6 for N rounds, return the best T
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Object recognition
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When this won’t work

If the percentage of inlier matches is 
small, then this may not work

In theory, < 50% inliers could break it
– But all the outliers would have to fit a single 

transform

Often works with fewer inliers
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A slightly trickier problem
What if we want to fit T to more than 
three points?
– For instance, all of the inliers we find?

Say we found 100 inliers
Now we have 200 equations, but still only 
6 unknowns
Overdetermined system of equations
This brings us back to linear regression
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Linear regression, > 2 points

The line won’t necessarily pass through any data point
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y = mx + b

(yi, xi)
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Some new definitions
No line is perfect – we can only find the 
best line out of all the imperfect ones

We’ll define a function Cost(m,b) that 
measures how far a line is from the data, 
then find the best line
– I.e., the (m,b) that minimizes Cost(m,b)
– Such a function Cost(m,b) is called an 

objective function
– You learned about these in section yesterday
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Line goodness
What makes a line good versus bad?
– This is actually a very subtle question
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Residual errors
The difference between what the model 
predicts and what we observe is called a 
residual error (i.e., a left-over)
– Consider the data point (x,y)
– The model m,b predicts (x,mx+b)
– The residual is y – (mx + b)

For 1D regressions, residuals can be easily 
visualized
– Vertical distance to the line
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Least squares fitting

This is a reasonable 
cost function, but we 
usually use something 
slightly different
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Least squares fitting

We prefer to 
make this a 
squared distance

Called “least 
squares”
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Why least squares?

There are lots of reasonable objective 
functions
Why do we want to use least squares?
This is a very deep question
– We will soon point out two things that are 

special about least squares
– The full story probably needs to wait for 

graduate-level courses, or at least next 
semester
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Gradient descent

You learned about this in section
Basic strategy:
1. Start with some guess for the minimum
2. Find the direction of steepest descent (gradient)
3. Take a step in that direction (making sure that 

you get lower, if not, adjust the step size)
4. Repeat until taking a step doesn’t get you much 

lower



Gradient descent, 1D quadratic

There is some black magic in setting the step size
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Some error functions are easy
A (positive) quadratic is a convex
function
– The set of points above the curve forms a 

(infinite) convex set
– The previous slide shows this in 1D

• But it’s true in any dimension

A sum of convex functions is convex
Thus, the sum of squared error is 
convex
Convex functions are “nice”
– They have a single global minimum
– Rolling downhill from anywhere gets you 

there
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Consequences

Our gradient descent method will always 
converge to the right answer
– By slowly rolling downhill
– It might take a long time, hard to predict 

exactly how long (see CS3220 and beyond)
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What else about LS?
Least squares has an even more amazing 
property than convexity
– Consider the linear regression problem

There is a magic formula for the optimal 
choice of (m,b)
– You don’t need to roll downhill, you can 

“simply” compute the right answer
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Closed-form solution!

This is a huge part of why everyone uses 
least squares
Other functions are convex, but have no 
closed-form solution, e.g.
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Closed form LS formula

The derivation requires linear algebra
– Most books use calculus also, but it’s not 

required (see the “Links” section on the course 
web page)

– There’s a closed form for any linear least-
squares problem



Linear least squares
Any formula where the residual is linear in 
the variables

Examples:
1. simple linear regression: [y – (mx + b)]2

2. finding an affine transformation

[x’ – (ax + by + c)]2 + [y’ – (dx + ey + f)]2

Non-example:
[x’ – abc x]2 (variables: a, b, c)
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Linear least squares
Surprisingly, fitting the 
coefficients of a 
quadratic is still linear 
least squares

The residual is still 
linear in the coefficients 

β1, β2, β3
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Wikipedia, “Least squares fitting”



Optimization

Least squares is an example of an 
optimization problem

Optimization: define a cost function and a 
set of possible solutions, find the one with 
the minimum cost

Optimization is a huge field
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Optimization strategies
From worse to pretty good:

1. Guess an answer until you get it right
2. Guess an answer, improve it until you get it right
3. Magically compute the right answer

For most problems 2 is the best we can do
Some problems are easy enough that we can do 3

We’ve seen several examples of this
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Sorting as optimization

Set of allowed answers: permutations of 
the input sequence
Cost(permutation) = number of out-of-
order pairs

Algorithm 1: Snailsort
Algorithm 2: Bubble sort 
Algorithm 3: ???
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Camera 1
Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

p1

p4

p3

p2

p5

p6

p7

minimize
f (R,T,P)

Another example:
“structure from motion”





Optimization is everywhere
How can you give someone the smallest 
number of coins back as change?

How do you schedule your classes so that 
there are the fewest conflicts?
How do you manage your time to 
maximize the grade / work tradeoff?
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Next time: Prelim 2
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