Computing transformations

Prof. Noah Snavely CS1114 http://cs1114.cs.cornell.edu

Administrivia

- A5 Part 1 due on Friday, A5 Part 2 out soon
- Prelim 2 next week, 4/7 (in class)
 - Covers everything since Prelim 1
 - Review session next Monday (time TBA)

Bilinear interpolation

Trilinear interpolation

How do we find the value of the function at C?

Invariant local features

Find features that are invariant to transformations

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...

Object matching in three steps

 Detect features in the template and search images

 Match features: find "similar-looking" features in the two images

3. Find a transformation *T* that explains the movement of the matched features

Step 1: Detecting SIFT features

 SIFT gives us a set of feature frames and descriptors for an image


```
img = imread(`futurama.png');
[frames, descs] = sift(img);
```


Step 2: Matching SIFT features

- Answer: for each feature in image 1, find the feature with the *closest descriptor* in image 2
- Called *nearest neighbor* matching

Matching SIFT features

 Output of the matching step: Pairs of matching points

$$[x_{1} y_{1}] \rightarrow [x_{1}' y_{1}']$$

$$[x_{2} y_{2}] \rightarrow [x_{2}' y_{2}']$$

$$[x_{3} y_{3}] \rightarrow [x_{3}' y_{3}']$$

 $[x_k y_k] \rightarrow [x_{k'} y_{k'}]$

. . .

Step 3: Find the transformation

How do we draw a box around the template image in the search image?

Key idea: there is a transformation that maps template → search image!

Image transformations

2D affine transformation

$$T = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

Solving for image transformations

 Given a set of matching points between image 1 and image 2...

... can we solve for an affine transformation *T* mapping 1 to 2?

Solving for image transformations

T maps points in image 1 to the corresponding point in image 2

How do we find 7?

We already have a bunch of point matches

$$[x_{1} y_{1}] \rightarrow [x_{1'} y_{1'}]$$

$$[x_{2} y_{2}] \rightarrow [x_{2'} y_{2'}]$$

$$[x_{3} y_{3}] \rightarrow [x_{3'} y_{3'}]$$

 $[x_k y_k] \rightarrow [x_{k'} y_{k'}]$

. . .

- Solution: Find the *T* that best agrees with these known matches
- This problem is a form of (linear) regression

An Algorithm: Take 1

- 1. To find *T*, randomly guess a, b, c, d, e, f, check how well *T* matches the data
- 2. If it matches well, return T
- 3. Otherwise, go to step 1

- The "snailsort" method
- We can do much better

Simplest case: fitting a line

But what happens here?

What does this remind you of ?

Simplest case: just 2 points

Simplest: just 2 points

Want to find a line
 y = mx + b

•
$$x_1 \rightarrow y_1, x_2 \rightarrow y_2$$

This forms a linear system:

$$y_1 = mx_1 + b$$

- $y_2 = mx_2 + b$
- x's, y's are knowns
- m, b are unknown
- Very easy to solve

Multi-variable linear regression

- What about 2D affine transformations?
 - maps a 2D point to another 2D point

$$T = \left[\begin{array}{rrrr} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array} \right]$$

We have a set of matches

$$[x_{1} y_{1}] \rightarrow [x_{1'} y_{1'}]$$

$$[x_{2} y_{2}] \rightarrow [x_{2'} y_{2'}]$$

$$[x_{3} y_{3}] \rightarrow [x_{3'} y_{3'}]$$

$$[x_4 y_4] \rightarrow [x_4' y_4']$$

. . .

Multi-variable linear regression

Consider just one match

 $[x_1 y_1] \rightarrow [x_1' y_1']$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ 1 \end{bmatrix}$$
$$\mathbf{ax_1 + by_1 + c = x_1'}$$
$$\mathbf{dx_1 + ey_1 + f = y_1'}$$

■ 2 equations, 6 unknowns → we need 3 matches

Finding an affine transform

- This is just a bigger linear system, still (relatively) easy to solve
- Really just two linear systems with 3 equations each (one for a,b,c, the other for d,e,f)
- We'll figure out how to solve this in a minute

An Algorithm: Take 2

- We have many more than three matches
- Some are correct, many are wrong
- Idea 2: select three matches at random, compute T

An Algorithm: Take 2

- Better then randomly guessing a,b,c,d,e,f
- What could go wrong?

Robustness

- Suppose 1/3 of the matches are wrong
- We select three at random
- The probability of at least one selected match being wrong is ?
- If we get just one match wrong, the transformation could be wildly off
- (The Arnold Schwarzenegger problem)
- How do we fix this?

Fixing the problem

- First observation:
- There is a way to test how good the transformation we get is (how?)

- A good transformation will agree with most of the matches
- A bad transformation will disagree with most of the matches
- How can we tell if a match agrees with the transformation T?

$$[x_1 y_1] \rightarrow [x_1' y_1']$$

Compute the distance between

$$T\begin{bmatrix} x_1\\y_1\\1\end{bmatrix} \quad \text{and} \quad \begin{bmatrix} x'_1\\y'_1\\1\end{bmatrix}$$

Find the distance between

$$T\begin{bmatrix} x_1\\y_1\\1\end{bmatrix}$$
 and $\begin{bmatrix} x'_1\\y'_1\\1\end{bmatrix}$

- If the distance is small, we call this match an inlier to T
- If the distance is large, it's an outlier to T
- For a correct match and transformation, this distance will be close to (but not exactly) zero
- For an incorrect match or transformation, this distance will probably be large

% define a threshold
thresh = 5.0; % 5 pixels

```
num_agree = 0;
diff = T * [x1 y1 1]' - [x1p y1p 1]';
if norm(diff) < thresh
    num_agree = num_agree + 1;
```


Finding T, third attempt

- 1. Select three points at random
- 2. Solve for the affine transformation T
- 3. Count the number of inlier matches to T
- 4. If *T* is has the highest number of inliers so far, save it
- 5. Repeat for N rounds, return the best T

- This algorithm is called RANSAC (RANdom SAmple Consensus)
- Used in an amazing number of computer vision algorithms
- Requires two parameters:
 - The agreement threshold
 - The number of rounds (how many do we need?)

How do we solve for T?

Given three matches, we have a linear system with six equations:

$$[x_{1} y_{1}] \rightarrow [x_{1}' y_{1}']$$

$$ax_{1} + by_{1} + c = x_{1}'
dx_{1} + ey_{1} + f = y_{1}'
ax_{2} + by_{2} + c = x_{2}'
dx_{2} + ey_{2} + f = y_{2}'
ax_{3} + by_{3} + c = x_{3}'
dx_{3} + ey_{3} + f = y_{3}'$$

Two 3x3 linear systems

\mathtt{ax}_1	+	\mathbf{by}_1	+	C	=	\mathbf{x}_1'
\mathbf{ax}_2	╋	\mathbf{by}_2	+	C	=	x ₂ ′
\mathbf{ax}_3	+	\mathbf{by}_{3}	+	C	=	x ₃ ′

dx_1	+	ey_1	+	f	=	\mathbf{Y}_1'
dx_2	+	ey_2	+	f	=	Y 2 [′]
\mathbf{dx}_3	╋	ey ₃	+	f	=	Y 3 [′]

Solving a 3x3 system

$$ax_1 + by_1 + c = x_1'$$

 $ax_2 + by_2 + c = x_2'$
 $ax_3 + by_3 + c = x_3'$

We can write this in matrix form:

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} x'_1 \\ x'_2 \\ x'_3 \end{bmatrix}$$

Now what?

Putting it all together

- 1. Select three points at random
- 2. Solve for the affine transformation T
- 3. Count the number of inlier matches to T
- 4. If *T* is has the highest number of inliers so far, save it
- 5. Repeat for N rounds, return the best T

Finding the object boundary

