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Administrivia

A5 Part 1 due on Friday, A5 Part 2 out 
soon

Prelim 2 next week, 4/7 (in class)
– Covers everything since Prelim 1
– Review session next Monday (time TBA)
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Bilinear interpolation
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Trilinear interpolation

How do we find the value of the function 
at C?
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Invariant local features
Find features that are invariant to transformations

– geometric invariance:  translation, rotation, scale
– photometric invariance:  brightness, exposure, …

Feature Descriptors
(Slides courtesy Steve Seitz)



Object matching in three steps
1. Detect features in the 

template and search images

2. Match features: find 
“similar-looking” features in 
the two images 

3. Find a transformation T that 
explains the movement of 
the matched features
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sift



Step 1: Detecting SIFT features
SIFT gives us a set of feature frames and 
descriptors for an image
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img = imread(‘futurama.png’);
[frames, descs] = sift(img);



Step 2: Matching SIFT features

Answer: for each feature in image 1, find 
the feature with the closest descriptor in 
image 2

Called nearest neighbor matching 
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Matching SIFT features
Output of the matching step:
Pairs of matching points

[ x1 y1 ]  [ x1’ y1’ ]
[ x2 y2 ]  [ x2’ y2’ ]
[ x3 y3 ]  [ x3’ y3’ ]

…
[ xk yk ]  [ xk’ yk’ ]
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Step 3: Find the transformation
How do we draw a box around the 
template image in the search image?

Key idea: there is a transformation that 
maps template search image!
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Image transformations
2D affine transformation
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Solving for image transformations

Given a set of matching points between 
image 1 and image 2…

… can we solve for an affine  
transformation T mapping 1 to 2?
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Solving for image transformations

T maps points in image 1 to the 
corresponding point in image 2
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(1,1,1)



How do we find T ?
We already have a bunch of point matches

[ x1 y1 ]  [ x1’ y1’ ]
[ x2 y2 ]  [ x2’ y2’ ]
[ x3 y3 ]  [ x3’ y3’ ]

…
[ xk yk ]  [ xk’ yk’ ]

Solution: Find the T that best agrees with 
these known matches
This problem is a form of (linear) regression

14



An Algorithm: Take 1

1. To find T, randomly guess a, b, c, d, e, f, 
check how well T matches the data

2. If it matches well, return T
3. Otherwise, go to step 1

The “snailsort” method
We can do much better
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Linear regression
Simplest case: fitting a line
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Linear regression
But what happens here?
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What does this 
remind you of ?



Linear regression
Simplest case: just 2 points
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Linear regression
Simplest: just 2 points

Want to find a line
y = mx + b

x1 y1, x2 y2

This forms a linear system:
y1 = mx1 + b
y2 = mx2 + b

x’s, y’s are knowns
m, b are unknown
Very easy to solve
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Multi-variable linear regression
What about 2D affine transformations?
– maps a 2D point to another 2D point

We have a set of matches
[ x1 y1 ]  [ x1’ y1’ ]
[ x2 y2 ]  [ x2’ y2’ ]
[ x3 y3 ]  [ x3’ y3’ ]

…
[ x4 y4 ]  [ x4’ y4’ ]
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Consider just one match
[ x1 y1 ]  [ x1’ y1’ ]

ax1 + by1 + c = x1’
dx1 + ey1 + f = y1’

2 equations, 6 unknowns we need 3 
matches
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Multi-variable linear regression



Finding an affine transform
This is just a bigger linear system, still 
(relatively) easy to solve

Really just two linear systems with 3 
equations each (one for a,b,c, the other 
for d,e,f)

We’ll figure out how to solve this in a 
minute

22



An Algorithm: Take 2

We have many more than three matches
Some are correct, many are wrong
Idea 2: select three matches at random, 
compute T
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An Algorithm: Take 2

Better then randomly guessing a,b,c,d,e,f
What could go wrong?
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Robustness
Suppose 1/3 of the matches are wrong
We select three at random
The probability of at least one selected 
match being wrong is ?
If we get just one match wrong, the 
transformation could be wildly off
(The Arnold Schwarzenegger problem)

How do we fix this?
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Fixing the problem

First observation:

There is a way to test how good the 
transformation we get is (how?)

26



Testing goodness
A good transformation will agree with most of the 
matches
A bad transformation will disagree with most of 
the matches
How can we tell if a match agrees with the 
transformation T?

[ x1 y1 ]  [ x1’ y1’ ]
Compute the distance between 

and 
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Testing goodness
Find the distance between 

and

If the distance is small, we call this match an 
inlier to T
If the distance is large, it’s an outlier to T
For a correct match and transformation, this 
distance will be close to (but not exactly) zero
For an incorrect match or transformation, this 
distance will probably be large

28



Testing goodness
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inlier
outlier



Testing goodness

% define a threshold 
thresh = 5.0;  % 5 pixels

num_agree = 0;
diff = T * [x1 y1 1]’ – [x1p y1p 1]’;
if norm(diff) < thresh

num_agree = num_agree + 1;
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Finding T, third attempt

1. Select three points at random
2. Solve for the affine transformation T
3. Count the number of inlier matches to T
4. If T is has the highest number of inliers so 

far, save it
5. Repeat for N rounds, return the best T
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Testing goodness
This algorithm is called RANSAC (RANdom
SAmple Consensus)

Used in an amazing number of computer 
vision algorithms

Requires two parameters:
– The agreement threshold
– The number of rounds (how many do we 

need?)
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How do we solve for T?
Given three matches, we have a linear 
system with six equations:

ax1 + by1 + c = x1’
dx1 + ey1 + f = y1’

ax2 + by2 + c = x2’
dx2 + ey2 + f = y2’

ax3 + by3 + c = x3’
dx3 + ey3 + f = y3’
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[ x1 y1 ]  [ x1’ y1’ ]

[ x2 y2 ]  [ x2’ y2’ ]

[ x3 y3 ]  [ x3’ y3’ ]



Two 3x3 linear systems

ax1 + by1 + c = x1’
ax2 + by2 + c = x2’
ax3 + by3 + c = x3’

dx1 + ey1 + f = y1’
dx2 + ey2 + f = y2’
dx3 + ey3 + f = y3’
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Solving a 3x3 system
ax1 + by1 + c = x1’
ax2 + by2 + c = x2’
ax3 + by3 + c = x3’

We can write this in matrix form:

Now what?

35



Putting it all together

1. Select three points at random
2. Solve for the affine transformation T
3. Count the number of inlier matches to T
4. If T is has the highest number of inliers 

so far, save it
5. Repeat for N rounds, return the best T
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Finding the object boundary
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