
Computing transformations

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu

Administrivia

A5 Part 1 due on Friday, A5 Part 2 out
soon

Prelim 2 next week, 4/7 (in class)
– Covers everything since Prelim 1
– Review session next Monday (time TBA)

2

Bilinear interpolation

3

Q11 Q12

Q21 Q22R2

R1

P

y1

y2

x1 x2x

y
(y, x)

Trilinear interpolation

How do we find the value of the function
at C?

4

Invariant local features
Find features that are invariant to transformations

– geometric invariance: translation, rotation, scale
– photometric invariance: brightness, exposure, …

Feature Descriptors
(Slides courtesy Steve Seitz)

Object matching in three steps
1. Detect features in the

template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation T that
explains the movement of
the matched features

6

sift

Step 1: Detecting SIFT features
SIFT gives us a set of feature frames and
descriptors for an image

7

img = imread(‘futurama.png’);
[frames, descs] = sift(img);

Step 2: Matching SIFT features

Answer: for each feature in image 1, find
the feature with the closest descriptor in
image 2

Called nearest neighbor matching

8

Matching SIFT features
Output of the matching step:
Pairs of matching points

[x1 y1] [x1’ y1’]
[x2 y2] [x2’ y2’]
[x3 y3] [x3’ y3’]

…
[xk yk] [xk’ yk’]

9

Step 3: Find the transformation
How do we draw a box around the
template image in the search image?

Key idea: there is a transformation that
maps template search image!

10

Image transformations
2D affine transformation

11

Solving for image transformations

Given a set of matching points between
image 1 and image 2…

… can we solve for an affine
transformation T mapping 1 to 2?

12

Solving for image transformations

T maps points in image 1 to the
corresponding point in image 2

13

(1,1,1)

How do we find T ?
We already have a bunch of point matches

[x1 y1] [x1’ y1’]
[x2 y2] [x2’ y2’]
[x3 y3] [x3’ y3’]

…
[xk yk] [xk’ yk’]

Solution: Find the T that best agrees with
these known matches
This problem is a form of (linear) regression

14

An Algorithm: Take 1

1. To find T, randomly guess a, b, c, d, e, f,
check how well T matches the data

2. If it matches well, return T
3. Otherwise, go to step 1

The “snailsort” method
We can do much better

15

Linear regression
Simplest case: fitting a line

16

Linear regression
But what happens here?

17

What does this
remind you of ?

Linear regression
Simplest case: just 2 points

18

Linear regression
Simplest: just 2 points

Want to find a line
y = mx + b

x1 y1, x2 y2

This forms a linear system:
y1 = mx1 + b
y2 = mx2 + b

x’s, y’s are knowns
m, b are unknown
Very easy to solve

19

Multi-variable linear regression
What about 2D affine transformations?
– maps a 2D point to another 2D point

We have a set of matches
[x1 y1] [x1’ y1’]
[x2 y2] [x2’ y2’]
[x3 y3] [x3’ y3’]

…
[x4 y4] [x4’ y4’]

20

Consider just one match
[x1 y1] [x1’ y1’]

ax1 + by1 + c = x1’
dx1 + ey1 + f = y1’

2 equations, 6 unknowns we need 3
matches

21

Multi-variable linear regression

Finding an affine transform
This is just a bigger linear system, still
(relatively) easy to solve

Really just two linear systems with 3
equations each (one for a,b,c, the other
for d,e,f)

We’ll figure out how to solve this in a
minute

22

An Algorithm: Take 2

We have many more than three matches
Some are correct, many are wrong
Idea 2: select three matches at random,
compute T

23

An Algorithm: Take 2

Better then randomly guessing a,b,c,d,e,f
What could go wrong?

24

Robustness
Suppose 1/3 of the matches are wrong
We select three at random
The probability of at least one selected
match being wrong is ?
If we get just one match wrong, the
transformation could be wildly off
(The Arnold Schwarzenegger problem)

How do we fix this?

25

Fixing the problem

First observation:

There is a way to test how good the
transformation we get is (how?)

26

Testing goodness
A good transformation will agree with most of the
matches
A bad transformation will disagree with most of
the matches
How can we tell if a match agrees with the
transformation T?

[x1 y1] [x1’ y1’]
Compute the distance between

and

27

Testing goodness
Find the distance between

and

If the distance is small, we call this match an
inlier to T
If the distance is large, it’s an outlier to T
For a correct match and transformation, this
distance will be close to (but not exactly) zero
For an incorrect match or transformation, this
distance will probably be large

28

Testing goodness

29

inlier
outlier

Testing goodness

% define a threshold
thresh = 5.0; % 5 pixels

num_agree = 0;
diff = T * [x1 y1 1]’ – [x1p y1p 1]’;
if norm(diff) < thresh

num_agree = num_agree + 1;

30

Finding T, third attempt

1. Select three points at random
2. Solve for the affine transformation T
3. Count the number of inlier matches to T
4. If T is has the highest number of inliers so

far, save it
5. Repeat for N rounds, return the best T

31

Testing goodness
This algorithm is called RANSAC (RANdom
SAmple Consensus)

Used in an amazing number of computer
vision algorithms

Requires two parameters:
– The agreement threshold
– The number of rounds (how many do we

need?)

32

How do we solve for T?
Given three matches, we have a linear
system with six equations:

ax1 + by1 + c = x1’
dx1 + ey1 + f = y1’

ax2 + by2 + c = x2’
dx2 + ey2 + f = y2’

ax3 + by3 + c = x3’
dx3 + ey3 + f = y3’

33

[x1 y1] [x1’ y1’]

[x2 y2] [x2’ y2’]

[x3 y3] [x3’ y3’]

Two 3x3 linear systems

ax1 + by1 + c = x1’
ax2 + by2 + c = x2’
ax3 + by3 + c = x3’

dx1 + ey1 + f = y1’
dx2 + ey2 + f = y2’
dx3 + ey3 + f = y3’

34

Solving a 3x3 system
ax1 + by1 + c = x1’
ax2 + by2 + c = x2’
ax3 + by3 + c = x3’

We can write this in matrix form:

Now what?

35

Putting it all together

1. Select three points at random
2. Solve for the affine transformation T
3. Count the number of inlier matches to T
4. If T is has the highest number of inliers

so far, save it
5. Repeat for N rounds, return the best T

36

Finding the object boundary

37

	Computing transformations
	Administrivia
	Bilinear interpolation
	Trilinear interpolation
	Invariant local features
	Object matching in three steps
	Step 1: Detecting SIFT features
	Step 2: Matching SIFT features
	Matching SIFT features
	Step 3: Find the transformation
	Image transformations
	Solving for image transformations
	Solving for image transformations
	How do we find T ?
	An Algorithm: Take 1
	Linear regression
	Linear regression
	Linear regression
	Linear regression
	Multi-variable linear regression
	Multi-variable linear regression
	Finding an affine transform
	An Algorithm: Take 2
	An Algorithm: Take 2
	Robustness
	Fixing the problem
	Testing goodness
	Testing goodness
	Testing goodness
	Testing goodness
	Finding T, third attempt
	Testing goodness
	How do we solve for T?
	Two 3x3 linear systems
	Solving a 3x3 system
	Putting it all together
	Finding the object boundary

