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Administrivia

Assignment 4 due tomorrow, A5 will be 
out tomorrow, due in two parts

Quiz 4 next Tuesday, 3/31

Prelim 2 in two weeks, 4/7 (in class)
– Covers everything since Prelim 1
– There will be a review session next Thursday 

or the following Monday (TBA)
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Invariant local features
Find features that are invariant to transformations

– geometric invariance:  translation, rotation, scale
– photometric invariance:  brightness, exposure, …

Feature Descriptors
(Slides courtesy Steve Seitz)

Why local features?
Locality 
– features are local, so robust to occlusion and 

clutter

Distinctiveness: 
– can differentiate a large database of objects

Quantity
– hundreds or thousands in a single image

Efficiency
– real-time performance achievable
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More motivation…  
Feature points are used for:
– Image alignment (e.g., mosaics)
– 3D reconstruction
– Motion tracking
– Object recognition
– Robot navigation
– … 

SIFT Features
Scale-Invariant Feature Transform



SIFT descriptor
Very complicated, but very powerful
(The details aren’t all that important for this class.)
128 dimensional descriptor

Adapted from a slide by David Lowe

Properties of SIFT
Extraordinarily robust matching technique
– Can handle significant changes in illumination

• Sometimes even day vs. night (below)
– Fast and efficient—can run in real time
– Lots of code available

• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Do these two images overlap?

NASA Mars Rover images NASA Mars Rover images

Answer below

•Sony Aibo

•SIFT usage:

Recognize  
charging 
station

Communicate
with visual
cards

Teach object 
recognition

SIFT demo
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How do we do this?
Object matching in three steps:

1. Detect features in the template and search 
images

2. Match features: find “similar-looking” 
features in the two images 

3. Find a transformation T that explains the 
movement of the matched features
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Step 1: Detecting SIFT features
SIFT gives us a set of feature frames and 
descriptors for an image
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img = imread(‘futurama.png’);
[frames, descs] = sift(img);
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sift

Step 1: Detecting SIFT features
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img = imread(‘futurama.png’);
[frames, descs] = sift(img);

% frames has a column for each 
%    feature: [ x ; y ; scale ; orient ]
%
% descs also has a column for each
%    feature: 128-dimensional
%    vector describing the local 
%    appearance of the feature

Step 1: Detecting SIFT features

(The number of features will very likely be different).
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sift

sift

Step 1: Detecting SIFT features Step 2: Matching SIFT features
How do we find matching features?
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?



Step 2: Matching SIFT features

Answer: for each feature in image 1, find 
the feature with the closest descriptor in 
image 2

Called nearest neighbor matching 
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Simple matching algorithm
[frames1, descs1] = sift(img1);  
[frames2, descs2] = sift(img2);
nF1 = length(frames1);  nF2 = length(frames2);

for i = 1:nF1
minDist = Inf;  minIndex = -1;

for j = 1:nF2
diff = descs1(i,:) – descs2(j,:);
dist = diff * diff’;
if dist < minDist

minDist = dist; minIndex = j;
end

end
fprintf(‘closest feature to %d is %d\n’, i, minIndex);

end   
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What problems can come up?

Not all features in image 1 are 
present in image 2
– Some features aren’t visible
– Some features weren’t detected

We might get lots of incorrect 
matches

Slightly better version:
– If the closest match is still too far 

away, throw the match away
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Matching algorithm, Take 2
nF1 = length(frames1);  nF2 = length(frames2);

for i = 1:nF1
minDist = inf;  minIndex = -1;

for j = 1:nF2
diff = descs1(i,:) – descs2(j,:);
dist = diff * diff’;
if dist < minDist

minDist = dist; minIndex = j;
end

end
if minDist < threshold
fprintf(‘closest feature to %d is %d\n’, i, minIndex);

end
end
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Matching SIFT features
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Matching SIFT features
Output of the matching step:
Pairs of matching points

[ x1 y1 ]  [ x1’ y1’ ]
[ x2 y2 ] [ x2’ y2’ ]
[ x3 y3 ] [ x3’ y3’ ]

…
[ xk yk ] [ xk’ yk’ ]
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Step 3: Find the transformation
How do we draw a box around the 
template image in the search image?

Key idea: there is a transformation that 
maps template search image!
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Refresher: earlier, we learned about 2D 
linear transformations
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Image transformations

Image transformations
Examples:
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scale rotation

Image transformations

To handle translations, we added a third 
coordinate (always 1)

(x, y) (x, y, 1)

“Homogeneous” 2D points
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Image transformations
Example: 
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translation

Image transformations
What about a general homogeneous 
transformation?

Called a 2D affine transformation
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Solving for image transformations

Given a set of matching points between 
image 1 and image 2…

… can we solve for an affine  
transformation T mapping 1 to 2?
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Solving for image transformations

T maps points in image 1 to the 
corresponding point in image 2
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(1,1,1)

How do we find T ?
We already have a bunch of point matches

[ x1 y1 ]  [ x1’ y1’ ]
[ x2 y2 ]  [ x2’ y2’ ]
[ x3 y3 ]  [ x3’ y3’ ]

…
[ xk yk ]  [ xk’ yk’ ]

Solution: Find the T that best agrees with 
these known matches
This problem is called (linear) regression
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An Algorithm: Take 1

1. To find T, randomly guess a, b, c, d, e, f, 
check how well T matches the data

2. If it matches well, return T
3. Otherwise, go to step 1

Q: What does this remind you of?
There are much better ways to solve linear 

regression problems
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Linear regression
Simplest case: fitting a line
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Linear regression
Even simpler case: just 2 points
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Linear regression
Even simpler case: just 2 points

Want to find a line
y = mx + b

x1 y1, x2 y2

This forms a linear system:
y1 = mx1 + b
y2 = mx2 + b

x’s, y’s are knowns
m, b are unknown
Very easy to solve
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Multi-variable linear regression
What about 2D affine transformations?
– maps a 2D point to another 2D point

We have a set of matches
[ x1 y1 ]  [ x1’ y1’ ]
[ x2 y2 ]  [ x2’ y2’ ]
[ x3 y3 ]  [ x3’ y3’ ]

…
[ x4 y4 ]  [ x4’ y4’ ]
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Consider just one match
[ x1 y1 ]  [ x1’ y1’ ]

ax1 + by1 + c = x1’
dx1 + ey1 + f = y1’

How many equations, how many unknowns?
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Multi-variable linear regression Finding an affine transform
Need 3 matches 6 equations

This is just a bigger linear system, still 
(relatively) easy to solve

Really just two linear systems with 3 
equations each (one for a,b,c, the other 
for d,e,f)
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