
Feature-based object recognition

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu

Administrivia

Assignment 4 due tomorrow, A5 will be
out tomorrow, due in two parts

Quiz 4 next Tuesday, 3/31

Prelim 2 in two weeks, 4/7 (in class)
– Covers everything since Prelim 1
– There will be a review session next Thursday

or the following Monday (TBA)

2

Invariant local features
Find features that are invariant to transformations

– geometric invariance: translation, rotation, scale
– photometric invariance: brightness, exposure, …

Feature Descriptors
(Slides courtesy Steve Seitz)

Why local features?
Locality
– features are local, so robust to occlusion and

clutter

Distinctiveness:
– can differentiate a large database of objects

Quantity
– hundreds or thousands in a single image

Efficiency
– real-time performance achievable

4

More motivation…
Feature points are used for:
– Image alignment (e.g., mosaics)
– 3D reconstruction
– Motion tracking
– Object recognition
– Robot navigation
– …

SIFT Features
Scale-Invariant Feature Transform

SIFT descriptor
Very complicated, but very powerful
(The details aren’t all that important for this class.)
128 dimensional descriptor

Adapted from a slide by David Lowe

Properties of SIFT
Extraordinarily robust matching technique
– Can handle significant changes in illumination

• Sometimes even day vs. night (below)
– Fast and efficient—can run in real time
– Lots of code available

• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Do these two images overlap?

NASA Mars Rover images NASA Mars Rover images

Answer below

•Sony Aibo

•SIFT usage:

Recognize
charging
station

Communicate
with visual
cards

Teach object
recognition

SIFT demo

12

How do we do this?
Object matching in three steps:

1. Detect features in the template and search
images

2. Match features: find “similar-looking”
features in the two images

3. Find a transformation T that explains the
movement of the matched features

13

Step 1: Detecting SIFT features
SIFT gives us a set of feature frames and
descriptors for an image

14

img = imread(‘futurama.png’);
[frames, descs] = sift(img);

15

sift

Step 1: Detecting SIFT features

16

img = imread(‘futurama.png’);
[frames, descs] = sift(img);

% frames has a column for each
% feature: [x ; y ; scale ; orient]
%
% descs also has a column for each
% feature: 128-dimensional
% vector describing the local
% appearance of the feature

Step 1: Detecting SIFT features

(The number of features will very likely be different).

17

sift

sift

Step 1: Detecting SIFT features Step 2: Matching SIFT features
How do we find matching features?

18

?

Step 2: Matching SIFT features

Answer: for each feature in image 1, find
the feature with the closest descriptor in
image 2

Called nearest neighbor matching

19

Simple matching algorithm
[frames1, descs1] = sift(img1);
[frames2, descs2] = sift(img2);
nF1 = length(frames1); nF2 = length(frames2);

for i = 1:nF1
minDist = Inf; minIndex = -1;

for j = 1:nF2
diff = descs1(i,:) – descs2(j,:);
dist = diff * diff’;
if dist < minDist

minDist = dist; minIndex = j;
end

end
fprintf(‘closest feature to %d is %d\n’, i, minIndex);

end

20

What problems can come up?

Not all features in image 1 are
present in image 2
– Some features aren’t visible
– Some features weren’t detected

We might get lots of incorrect
matches

Slightly better version:
– If the closest match is still too far

away, throw the match away

21

Matching algorithm, Take 2
nF1 = length(frames1); nF2 = length(frames2);

for i = 1:nF1
minDist = inf; minIndex = -1;

for j = 1:nF2
diff = descs1(i,:) – descs2(j,:);
dist = diff * diff’;
if dist < minDist

minDist = dist; minIndex = j;
end

end
if minDist < threshold
fprintf(‘closest feature to %d is %d\n’, i, minIndex);

end
end

22

Matching SIFT features

23

Matching SIFT features
Output of the matching step:
Pairs of matching points

[x1 y1] [x1’ y1’]
[x2 y2] [x2’ y2’]
[x3 y3] [x3’ y3’]

…
[xk yk] [xk’ yk’]

24

Step 3: Find the transformation
How do we draw a box around the
template image in the search image?

Key idea: there is a transformation that
maps template search image!

25

Refresher: earlier, we learned about 2D
linear transformations

26

Image transformations

Image transformations
Examples:

27

scale rotation

Image transformations

To handle translations, we added a third
coordinate (always 1)

(x, y) (x, y, 1)

“Homogeneous” 2D points

28

Image transformations
Example:

29

translation

Image transformations
What about a general homogeneous
transformation?

Called a 2D affine transformation

30

Solving for image transformations

Given a set of matching points between
image 1 and image 2…

… can we solve for an affine
transformation T mapping 1 to 2?

31

Solving for image transformations

T maps points in image 1 to the
corresponding point in image 2

32

(1,1,1)

How do we find T ?
We already have a bunch of point matches

[x1 y1] [x1’ y1’]
[x2 y2] [x2’ y2’]
[x3 y3] [x3’ y3’]

…
[xk yk] [xk’ yk’]

Solution: Find the T that best agrees with
these known matches
This problem is called (linear) regression

33

An Algorithm: Take 1

1. To find T, randomly guess a, b, c, d, e, f,
check how well T matches the data

2. If it matches well, return T
3. Otherwise, go to step 1

Q: What does this remind you of?
There are much better ways to solve linear

regression problems

34

Linear regression
Simplest case: fitting a line

35

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

Linear regression
Even simpler case: just 2 points

36

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

Linear regression
Even simpler case: just 2 points

Want to find a line
y = mx + b

x1 y1, x2 y2

This forms a linear system:
y1 = mx1 + b
y2 = mx2 + b

x’s, y’s are knowns
m, b are unknown
Very easy to solve

37

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

Multi-variable linear regression
What about 2D affine transformations?
– maps a 2D point to another 2D point

We have a set of matches
[x1 y1] [x1’ y1’]
[x2 y2] [x2’ y2’]
[x3 y3] [x3’ y3’]

…
[x4 y4] [x4’ y4’]

38

Consider just one match
[x1 y1] [x1’ y1’]

ax1 + by1 + c = x1’
dx1 + ey1 + f = y1’

How many equations, how many unknowns?

39

Multi-variable linear regression Finding an affine transform
Need 3 matches 6 equations

This is just a bigger linear system, still
(relatively) easy to solve

Really just two linear systems with 3
equations each (one for a,b,c, the other
for d,e,f)

40

