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Administrivia

= Assighment 4 due on Friday

— The first problem is tricky — please get started
early!

= Quiz 4 next Tuesday, 3/31

= Prelim 2 in two weeks, 4/7 (in class)
— Covers everything since Prelim 1

= Midterm course evaluations
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ConveXx hull

= The convex hull of a set of points is the
smallest convex polygon that contains all
of the points

@ Cornell University



INnverse mapping and
bilinear interpolation

= Given an image [;,, and a 2D transform 1,
compute the transformed image /..t using
Inverse m '

(5.25, 1.00001) &
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" Given: T [ 10] = [ 1.00001 ]
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INnverse mapping and
bilinear interpolation

= Given: Tl[m]_[ 5.25 ]

10 1.00001
~0.75 m
(5,1) (6, 1)
(5.25, 1.00001) \u
(5.2) (6.2
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I;,, (zoomed in)
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ODbject recognition

= Our robots can now recognize this:

Median vector J

Thresholding J—% c(;?nn;(fr?;i?s J—% Find biggest
A

Convex hull J
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Object recognition

= What else can we recognize with this
algorithm?

Median vector

Thresholding — cennestee Find biggest
components
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Convex hull
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ODbject recognition

= Can we tell these objects apart?

*All trademarks are properties of their respective owners
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Object recognition

= How about these objects?

&
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Object recognition

= For some objects color is a good feature
to use for recognition

— For instance, a bright red lightstick

= What other features might we use?
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ODbject recognition

= The most general form involves
recognizing all of the different types of
objects in an image

= This problem is extremely difficult for
computers
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Easier problem

= Glven an image of an object, can we find
that object in another image”?
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Finding specific objects

= What problems might come up?
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Feature-based image matching

Multiple View
Geometry

ir e 1)

(Slides courtesy Steve Seitz)
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Feature-based image matching

Multiple View
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What makes a good feature?

Snoop demo (Slides courtesy Steve Seitz)
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Want uniqueness

= Look for image regions that are unusual
— Lead to unambiguous matches in other images

= How to define “unusual”?

(Slides courtesy Steve Seitz)
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Local measures of uniqueness

= Suppose we only consider a small window
of pixels
— What defines whether a feature is a good or

bad candidate?

L

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

i@j@ Cornell University
RS




Feature detection
* Local measure of feature uniqueness
— How does the window change when you shift it?
— Shifting the window In any direction causes a

big change
\ \ \
o |
AN
“flat” region: “edge”: “corner”:
no change in no change along significant change
all directions the edge direction in all directions
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Corner detector example




f value (red high, blue low)
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Find local maxima of f




Feature descriptors

= We know how to detect good points
= Next question: How do we match them?
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Matching feature points

= How do we match features?

= Lots of possibilities

— Simple option: match square windows around
the point

— State of the art approach: SIFT

- David Lowe, UBC
http://www.cs.ubc.ca/—lowe/keypoints/
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Invariant local features

* Find features that are invariant to transformations
— geometric invariance: translation, rotation, scale
— photometric invariance: brightness, exposure, ...

()

(Slides courtesy Steve Seitz)

Feature Descriptors
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SIFT descriptor

= Very complicated, but very powerful
= (The details aren’t all that important for this class.)
= 128 dimensional descriptor
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Adapted from a slide by David Lowe
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SIFT demo
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File Image

Template Image

Webcam Image

Camera Options

Stop Camera |
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