
Linked lists and memory allocation

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu

Administrivia
Assignment 3 has been posted
– Due next Friday, March 6

Prelim 1 Thursday in class
– Review session this evening at 7:15pm,

Upson 315
– Review session tomorrow, 8:30pm?
– Topics include: running time, sorting,

selection, graphs, connected components,
linked lists

– Closed-book, closed-note

2

Administrivia

Homework policy:

You can discuss problems in general with
other students

You must write the code on your own –
you may not share code

3

Bubble sort

What is the running time?

Which is faster?
a) Bubble sort
b) Quicksort

4

5

Linked lists

Alternative to an array

Every element (cell) has two parts:
1. A value (as in an array)
2. A link (address, pointer) to the next cell

This pointer will always point to the start of a cell

6

Linked lists

8 4 1 3

Values

Links

7

Example

8 4 1 3

4 5 1 9 8 3 3 0 X

8 5 4

1 2 3

7 1 9

4 5 6

3 0 X

7 8 9

43

10 11

1 2 3 4 5 6 7 8 9

47

10 11

8

Doubly linked lists

8 4 1 3

3148

9

A doubly-linked list in memory

4 7 2

1 2 3

0 8 7

4 5 6

4 4 0

7 8 9

48

First element

Last element
Size of list

X X

Doubly-linked list insertion

10

Initial list

Insert a 5
at end

Insert an 8
at the start

0 0 0
1 2 3

X X X
4 5 6

X X X
7 8 9

X X X X
10 11 12 13

1 2 3

5
4 5 6

X X X
7 8 9

X X X X
10 11 12 13

1 2 3 4 5 6 7 8 9

5 8 X X X X
10 11 12 13

Memory allocation
When we need a new cell, how do we
know where to find it?
We’ll keep track of a “free pointer” to the
next unused cell after the list

11

5 8 2

1 2 3

0 8 7

4 5 6

4 4 0

7 8 9

First element

Last element
Size of list

X X

10 11 12

11

Next free cell

Doubly-linked list insertion

12

Insert a
9 at the

start

5 5 1
1 2 3

0 5 0
4 5 6

X X X
7 8 9

X X X X
10 11 12 13

8
14

8 5 2
1 2 3

8 5 0
4 5 6

0 9 5
7 8 9

X X X X
10 11 12 13

11
14

Delete
the last
element

8 8 1
1 2 3

8 5 0
4 5 6

0 9 0
7 8 9

X X X X
10 11 12 13 14

13

Memory allocation

Current strategy: when we need more
storage, we just grab locations at the end
What can go wrong?

When we delete items from a linked list
we change pointers so that the items are
inaccessible
– But they still waste space!

Memory allocation
Strategy 1: Computer keep tracks of free
space at the end

Strategy 2: Computer keeps a linked list
of free storage blocks (“freelist”)
– For each block, stores the size and location
– When we ask for more space, the computer

finds a big enough block in the freelist
– What if it doesn’t find one?

14

Maintaining a freelist

15

7 4 2
1 2 3

7 5 0
4 5 6

0 9 4
7 8 9

X X X X
10 11 12 13

Delete
the last
element

7 7 1
1 2 3

X X X
4 5 6

0 9 0
7 8 9

X X X X
10 11 12 13

Start: 10
Free space: 999,990

Start: 10
Free space: 999,990

Start: 4
Free space: 3

Free list

Free list

16

Allocation issues

Surprisingly important question:
– Which block do you supply?
– The smallest one that the users request fits

into?
– A larger one, in case the user wants to grow

the array?

Memory deallocation
How do we give the computer back a
block we’re finished with?

Someone has to figure out that certain
values will never be used ever
(“garbage”), and should be put back on
the free list
– If this is too conservative, your program will

use more and more memory (“memory leak”)
– If it’s too aggressive, your program will crash

(“blue screen of death”)

17

Memory deallocation
Two basic options:

1. Manual storage reclamation
– Programmer has to explicitly free garbage
– Languages: C, C++, assembler

2. Automatic storage reclamation
– Computer will notice that you’re no longer

using cells, and recycle them for you
– Languages: Matlab, Java, C#, Scheme

18

19

Manual storage reclamation
Programmers always ask for a block of
memory of a certain size
– In C, explicitly declare when it is free

Desirable but complex invariants:
1. Everything should be freed when it is no

longer going to be used
2. If we free something, we shouldn’t try to use

it again
3. And, it should be freed exactly once!
4. Minimize fragmentation

20

Automatic storage reclamation

“Garbage collection”
1st challenge: find memory
locations that are still in use
by the programmer (“live”)
1. Anything that has a name the

programmer can get to (the
“root set”)

2. Anything pointed to by a live
object

Root set in Matlab

Garbage collection

Two lists, X and Y
Which cells are live?
Which cells are garbage?

21

4 5 1 0 8 3 1 62 5 3
1 2 3 4 5 6 7 8 9 10 11 12 13

7 1 0
14 15

1511

16

X Y

22

Simple algorithm: mark-sweep

Mark: Chase the pointers from the root
set, marking everything as you go

Sweep: Scan all of memory – everything
not marked is garbage, and can go back
on the free list

Mark and sweep

Mark phase
Sweep phase

23

4 5 1 0 8 3 1 62 5 3
1 2 3 4 5 6 7 8 9 10 11 12 13

7 1 0
14 15

1511

16

X Y

Root set: { X, Y }

Mark and sweep
The machine needs to be able to tell
where the pointers are (we’ll assume that
it’s up to the programmer to do that)
– For instance, the programmer will say that the

second entry in a cell is a pointer (for singly-
linked list)

– Or, for a doubly-linked list, the first and third
entries in a cell are pointers

24

Mark and sweep
In general, pointers may have a complex
structure

25

How do we mark, in the general case?

When to do garbage collection?
Option 1 (“stop the world”): Once memory
is full, stop everything and run garbage
collection
– Your program will freeze while the garbage is

being collected
– Not good if you’re coding the safety monitoring

system for a nuclear reactor

Option 2 (“incremental GC”): Collect
garbage in parallel with the main program
– Needs to be careful not to step on the program

26

Assignment 3
Implementing stacks and queues using
linked lists

Using DFS and BFS to find connected
components

Guiding the robot with the lightstick

27

	Linked lists and memory allocation
	Administrivia
	Administrivia
	Bubble sort
	Linked lists
	Linked lists
	Example
	Doubly linked lists
	A doubly-linked list in memory
	Doubly-linked list insertion
	Memory allocation
	Doubly-linked list insertion
	Memory allocation
	Memory allocation
	Maintaining a freelist
	Allocation issues
	Memory deallocation
	Memory deallocation
	Manual storage reclamation
	Automatic storage reclamation
	Garbage collection
	Simple algorithm: mark-sweep
	Mark and sweep
	Mark and sweep
	Mark and sweep
	When to do garbage collection?
	Assignment 3

