Linked lists and memory allocation

Prof. Noah Snavely
CS1114
http://cslll14.cs.cornell.edu

gejy Cornell University
s/ Computer Science

Administrivia

= Assignment 3 has been posted
— Due next Friday, March 6

= Prelim 1 Thursday in class

— Review session this evening at 7:15pm,
Upson 315

— Review session tomorrow, 8:30pm?

— Topics include: running time, sorting,
selection, graphs, connected components,
linked lists

— Closed-book, closed-note

i@j@ Cornell University
RS

Administrivia

= Homework policy:

= You can discuss problems in general with
other students

= You must write the code on your own —
you may not share code

@ Cornell University

Bubble sort

= What is the running time?

= Which is faster?
a) Bubble sort
D) Quicksort

@ Cornell University

Linked lists

= Alternative to an array

= Every element (cell) has two parts:
1. A value (as in an array)

2. A link (address, pointer) to the next cell
This pointer will always point to the start of a cell

@ Cornell University

Linked lists

Values

AN

» »
» »

VA

Links

@ Cornell University

Example

WP
SN
g
>
g
-
1=
X

~N e
AN
>
Cl
=
©
©
X

Ei‘@j% Cornell University
RS

Doubly linked lists

@ Cornell University

A doubly-linked list In memory

1 2 3 456 7 89
47 EIEIH

First element /
Size of list

Last element

@E Cornell University

Doubly-linked list insertion

1 2 3 4 5 o6 7 8 9 10 11 12 13
Initial list OO O | X | X | X | XXX X[|X[X]|X

1 2 3 4 5 6 v 8 9 10 11 12 13

Inserta b

1 2 9 10 11 12 13

at the start LISL T el IxIx[x]x

i@j@ Cornell University
RS

Memory allocation

= When we need a new cell, how do we
know where to find 1t?

= We’'ll keep track of a “free pointer” to the
next unused cell after the list

1 2 3 4 5 6 7 8 9 10 1112

s5({s|2(11|lo|8|7]4a|a]|o]|x]|X

N

Size of list Next free cell
Last element

i@j@ Cornell University
RS

Doubly-linked list insertion

=
N
w

4 8 9 10 11 12 13 14
5(5[1|8]o|5|o]x|x|X|x]|x|x]X

-
N
W
AN
Ul
o
~
00

Insert a 9 10 11 12 13 14

start

=
N
w
AN
U1
o

Delete 9 10 11 12 13 14

/7 8
wetost [8]8] Telslofolelo] x]x]x]x

element

i@j@ Cornell University
RS

Memory allocation

= Current strategy: when we need more
storage, we just grab locations at the end

= What can go wrong?

= When we delete items from a linked list
we change pointers so that the items are

Inaccessible
— But they still waste space!

i@j@ Cornell University
RS

Memory allocation

= Strategy 1: Computer keep tracks of free
space at the end

= Strategy 2: Computer keeps a linked list
of free storage blocks (“freelist”)
— For each block, stores the size and location

— When we ask for more space, the computer
finds a big enough block in the freelist

— What if it doesn’t find one?

i@j@ Cornell University
RS

I\/Iaintaining a freelist

1 2 T T T T
T2 nﬂn X | X | X
.| Start: 10
Free list Free space: 999,990

Delete 1 2 3 4 5 6 7 9 10 11 12 13
element
, Start: 4 Start: 10
Free list .
Free space: 3 Free space: 999,990

i@j@ Cornell University
RS

Allocation Issues

= Surprisingly important question:
— Which block do you supply?

— The smallest one that the users request fits
INto?

— A larger one, In case the user wants to grow
the array?

@ Cornell University

Memory deallocation

= How do we give the computer back a
block we’re finished with?

= Someone has to figure out that certain
values will never be used ever
(“garbage”), and should be put back on
oY the free list

® © - If this is too conservative, your program will
" use more and more memory (“memory leak™)

— If It's too aggressive, your program will crash
(“blue screen of death”)

i@j@ Cornell University
RS

Memory deallocation

= Two basic options:

1. Manual storage reclamation
— Programmer has to explicitly free garbage
— Languages: C, C++, assembler

2. Automatic storage reclamation

— Computer will notice that you’re no longer
using cells, and recycle them for you

— Languages: Matlab, Java, C#, Scheme

i@j@ Cornell University
RS

Manual storage reclamation

= Programmers always ask for a block of
memory of a certain size
— In C, explicitly declare when it is free

= Desirable but complex invariants:

1. Everything should be freed when it is no
longer going to be used

2. If we free something, we shouldn’t try to use
It again

. And, it should be freed exactly once!

4. Minimize fragmentation

W

i@j@ Cornell University
RS

Automatic storage reclamation

) MATLAB 7.5.0 [R2007h)
Fir Fill Jdug Dischoile]l Desdep widbw Hep “ - ,,
e == ® “Garbage collection
Shartcate [#] How bo add - [#] What's Naw
5 ’ Woi =T
\ | B | - |51"-m Q) hewto MATAZT Wkl
| ke

S fewe oo | | = 1St challenge: find memory

HR1 [1,0,0:01..0 1 Refe i . .

sl e 4 locations that are still in use
HR4 [0.9604-... -0... 0.... >> help .y yy

e fea S5 e | Dy the programmer (“live”)
o s SUANS N B 1. Anything that has a name the

programmer can get to (the
y “root set”)

2. Anything pointed to by a live
object

mmmmmmmmmmmmm

~help xcorr 2
~help dxform
~help xcorxr 2
help confj

>>

Root set in Matlab

i@j@ Cornell University
RS

Garbage collection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11,2 (4|5(1|0(8|3|15|1(6|5|3|7]|1(O0
X Y

= Two lists, X and Y
= Which cells are live?
= Which cells are garbage?

@ Cornell University

Simple algorithm: mark-sweep

= Mark: Chase the pointers from the root
set, marking everything as you go

= Sweep: Scan all of memory — everything
not marked iIs garbage, and can go back
on the free list

i@j@ Cornell University
RS

Mark and sweep

=
N
w
AN
a1
o

/7 8 9 10 11 12 13 14 15 16
N ° : ® e g
11| 2 | ~ |

| BB g|3|sl1l6]58]3|7|1]0
X Y

£
U
=
@

Rootset: { X, Y }

= Mark phase
= Sweep phase

@ Cornell University

Mark and sweep

= The machine needs to be able to tell
where the pointers are (we’ll assume that
It’s up to the programmer to do that)

— For instance, the programmer will say that the
second entry in a cell is a pointer (for singly-
linked list)

— Or, for a doubly-linked list, the first and third
entries in a cell are pointers

i@j@ Cornell University
RS

Mark and sweep

= In general, pointers may have a complex
structure

1 [N\

How do we mark, in the general case?

i@j@ Cornell University
RS

When to do garbage collection?

= Option 1 (“stop the world”): Once memory
Is full, stop everything and run garbage
collection

— Your program will freeze while the garbage is
being collected

— Not good if you’re coding the safety monitoring
system for a nuclear reactor

= Option 2 (“incremental GC”): Collect
garbage in parallel with the main program

— Needs to be careful not to step on the program

i@j@ Cornell University
RS

Assignment 3

= Implementing stacks and gueues using
linked lists

= Using DFS and BFS to find connected
components

= Guiding the robot with the lightstick

@ Cornell University

	Linked lists and memory allocation
	Administrivia
	Administrivia
	Bubble sort
	Linked lists
	Linked lists
	Example
	Doubly linked lists
	A doubly-linked list in memory
	Doubly-linked list insertion
	Memory allocation
	Doubly-linked list insertion
	Memory allocation
	Memory allocation
	Maintaining a freelist
	Allocation issues
	Memory deallocation
	Memory deallocation
	Manual storage reclamation
	Automatic storage reclamation
	Garbage collection
	Simple algorithm: mark-sweep
	Mark and sweep
	Mark and sweep
	Mark and sweep
	When to do garbage collection?
	Assignment 3

