Linked lists

Prof. Noah Snavely
CS1114
http://csll1l14.cs.cornell.edu

? Cornell University
5 Computer Science

Administrivia

= Assignment 2, Part 2 due tomorrow

— Please don’t wait until the last minute to finish (the last
two problems are challenging)

= Assignment 3 will be posted tomorrow
— Due in two weeks (Friday, 3/6)

= Prelim 1 next Thursday, 2/26 In class
— Review session: Tuesday or Wednesday evening?
— Topics include: running time, graphs, linked lists

i@j@ Cornell University
RS

Making quickselect fast on
non-random input

= The version of quickselect in A2 can be
very slow

= What is the problem?

= How can we fix 1t?

@ Cornell University

Conditionals with multiple branches

= What if we want the robot to correctly

obey a traffic signal?

L = getLightColor();

iIT L == “red’
robotStop();

end

1T L == “green’
robotDriveStraight(r, 10, 100);

end

it L == “yellow”
robotDriveStraight(r, 100, 100);

end

iIT L ~= “red” & L ~= “green” && L ~= “yellow”
fprintf(“Unknown light color\n”);

end

@ Cornell University

Conditionals with multiple branches

= What if we want the robot to correctly

obey a traffic signal?

L = getLightColor();
iIf L == “red’
robotStop();
else
if L == “green’
robotDriveStraight(r, 10, 100);
else
iIf L == “yellow”
robotDriveStraight(r, 100, 100);
else
fprintf(“Unknown light color\n”);
end

end

@ Cornell University

Conditionals with multiple branches

= What if we want the robot to correctly
obey a traffic signal?

L = getLightColor();
iIf L == “red”

robotStop();
elseif L == “green”’
robotDriveStraight(r, 10, 100);
elseif L == “yellow’
robotDriveStraight(r, 100, 100);
else

fprintf(“Unknown light color\n”);
end

@ Cornell University

Last time

= Graph traversal

= Two types of todo lists:
— Stacks - Depth-first search
— Queues > Breadth-first search

@ Cornell University

Last time

= Implementing a stack and queue using
arrays

= What went wrong?

= Today we’ll talk about a better approach

@ Cornell University

Linked lists

= Alternative to an array

= Every element (cell) has two parts:
1. A value (as in an array)
2. A link to the next cell

@ Cornell University

Linked lists

Values

AN

o o
» »

VA

Links

@ Cornell University

Linked lists as memory arrays

= We’'ll implement linked lists using M

= A cell will be represented by a pair of
adjacent array entries

@ Cornell University

A few detalls

= | will draw odd numbered entries in blue
and even ones In red
— Odd entries are values
= Number interpreted as list elements

— Even ones are links
= Number interpreted as index of the next cell
= AKA location, address, or pointer

= The first cell is M(1) and M(2) (for now)

= The last cell has O, 1.e. pointer to M(0)
— Also called a “null pointer”

i@j@ Cornell University
RS

Example

1 2 3 4 5 6 7 8 9

813145111 7]3]|]0(X

1 2 3 4 5 6 7 8 9

8151|7413 |3|0]X

>
=
78]
T
v
N
=
)
:
(@]
o

Traversing a linked list

= Start at the first cell, [M(1),M(2)]

= Access the first value, M(1)

= The next cell is at location c = M(2)

= |[fc = 0, we're done

= Otherwise, access the next value, M(c)
= The next cell is at location ¢ = M(c+1)
= Keep goinguntilc = 0

i@j@ Cornell University
RS

Inserting an element — arrays

= How can we insert an element X into an
array A?

= Depends where it needs to go:

— End of the array:
A = [A x];

— Middle of the array (say, between elements
A(5) and A(6))?

— Beginning of the array?

@ Cornell University

Inserting an element — linked lists

= Create a new cell and splice it into the list

8 1 4 {1 | 3
M(1)

S

= Splicing depends on where the cell goes:

— How do we insert:
* At the end?
e In the middle?
= At the beginning?

i@j@ Cornell University
RS

Adding a header

= We can represent the linked list just by
the initial cell, but this is problematic

— Problem with inserting at the beginning

= |Instead, we add a header — a few entries
that are not cells, but hold information
about the list
1. A pointer to the first element
2. A count of the number of elements

i@j@ Cornell University
RS

Initial list

Linked list insertion

First element / \

starts at 5

Inserta b
at end

Insert an 8
after the 1

Insert a 6
at the start

1 2 3 4 b5 6 { 8 9 10 11 12 13
5121210113 XXX X[X[X]|X
Size of list is 2
1 4 5 6 V4 8 9 10 11 12 13
5131217113510 X|X|X|[X[X
1 2 3 4 5 6 { 8 9 10 11 12 13
514121711191 510|8[3[X|X]|X
1 2 3 4 5 6 V4 8 9 10 11 12 13
1115201119510 8|3|6|5]|X

i@j@ Cornell University
RS

Linked list deletion

= We can also delete cells

= Simply update the header and change one
pointers (to skip over the deleted
element)

= Deleting things is the source of many bugs
IN computer programs

— You need to make sure you delete something
once, and only once

i@j@ Cornell University
RS

Linked list deletion

1 4 6 7 8 9 10 11 12 13
Initial list 5 7 olslols!|3|x!|x|x
1 4 6 7 8 9 10 11 12 13

Delete the
last cell 5 O 9 |13 X | X | X
1 4 6 7 8 9 10 11 12 13
Delete the 8 | 5§ @) 3 X | XX
1 4 6 7 8 9 10 11 12 13

Delete the
first cell 3 O X|X]X

i@j@ Cornell University
RS

Linked lists — running time

= We can insert an item (at the front) In
constant (O(1)) time

— Just manipulating the pointers
— As long as we know where to allocate the cell

= We can delete an element (at the front) In
constant time

i@j@ Cornell University
RS

Linked lists — running time

= What about inserting / deleting from the
end of the list?

= How can we fix this?

@ Cornell University

Doubly linked lists

@ Cornell University

A doubly-linked list In memory

3 4 6
20 I

1N
~ | 00
o ©

1 2 5
47 8

First element /
Size of list

Last element

@E Cornell University

	Linked lists
	Administrivia
	Making quickselect fast on non-random input
	Slide Number 4
	Conditionals with multiple branches
	Conditionals with multiple branches
	Last time
	Last time
	Linked lists
	Linked lists
	Linked lists as memory arrays
	A few details
	Example
	Traversing a linked list
	Inserting an element – arrays
	Inserting an element – linked lists
	Adding a header
	Linked list insertion
	Linked list deletion
	Linked list deletion
	Linked lists – running time
	Linked lists – running time
	Doubly linked lists
	A doubly-linked list in memory

