
Linked lists

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu



Administrivia
Assignment 2, Part 2 due tomorrow
– Please don’t wait until the last minute to finish (the last 

two problems are challenging)

Assignment 3 will be posted tomorrow
– Due in two weeks (Friday, 3/6)

Prelim 1 next Thursday, 2/26 in class
– Review session: Tuesday or Wednesday evening?
– Topics include: running time, graphs, linked lists

2



Making quickselect fast on 
non-random input

The version of quickselect in A2 can be 
very slow

What is the problem?

How can we fix it?

3



4

L = getLightColor();
if L == ‘red’

robotStop();
end
if L == ‘green’

robotDriveStraight(r, 10, 100);
end
if L == ‘yellow’

robotDriveStraight(r, 100, 100);
end
if L ~= ‘red’ && L ~= ‘green’ && L ~= ‘yellow’

fprintf(‘Unknown light color\n’);
end

Conditionals with multiple branches
What if we want the robot to correctly 
obey a traffic signal?



Conditionals with multiple branches
What if we want the robot to correctly 
obey a traffic signal?

5

L = getLightColor();
if L == ‘red’

robotStop();
else

if L == ‘green’
robotDriveStraight(r, 10, 100);

else
if L == ‘yellow’

robotDriveStraight(r, 100, 100);
else

fprintf(‘Unknown light color\n’);
end

end
end



Conditionals with multiple branches
What if we want the robot to correctly 
obey a traffic signal?

6

L = getLightColor();
if L == ‘red’

robotStop();
elseif L == ‘green’

robotDriveStraight(r, 10, 100);
elseif L == ‘yellow’

robotDriveStraight(r, 100, 100);
else

fprintf(‘Unknown light color\n’);
end



Last time

Graph traversal

Two types of todo lists:
– Stacks Depth-first search
– Queues Breadth-first search

7

2

5

1

3

10

6 8

4
7

9
2

4

1

5

3

7 9

8
10

6



Last time

Implementing a stack and queue using 
arrays

What went wrong?

Today we’ll talk about a better approach

8



9

Linked lists

Alternative to an array

Every element (cell) has two parts:
1. A value (as in an array)
2. A link to the next cell



10

Linked lists

8 4 1 3

Values

Links



11

Linked lists as memory arrays

We’ll implement linked lists using M

A cell will be represented by a pair of 
adjacent array entries

M …



12

A few details
I will draw odd numbered entries in blue 
and even ones in red
– Odd entries are values

• Number interpreted as list elements
– Even ones are links

• Number interpreted as index of the next cell
• AKA location, address, or pointer

The first cell is M(1) and M(2) (for now)
The last cell has 0, i.e. pointer to M(0)
– Also called a “null pointer”



13

Example

8 4 1 3

8 5 1

1 2 3

7 4 3

4 5 6

3 0 X

7 8 9

8 3 4

1 2 3

5 1 7

4 5 6

3 0 X

7 8 9



14

Traversing a linked list

Start at the first cell, [M(1),M(2)]
Access the first value, M(1)
The next cell is at location c = M(2)
If c = 0, we’re done
Otherwise, access the next value, M(c)
The next cell is at location c = M(c+1)
Keep going until c = 0



Inserting an element – arrays
How can we insert an element x into an 
array A?
Depends where it needs to go:
– End of the array:

A = [A x];

– Middle of the array (say, between elements 
A(5) and A(6))?

– Beginning of the array?

15



16

Inserting an element – linked lists

Create a new cell and splice it into the list

Splicing depends on where the cell goes:
– How do we insert:

• At the end?
• In the middle?
• At the beginning?

8 4 1 3

5
M(1)



17

Adding a header
We can represent the linked list just by 
the initial cell, but this is problematic
– Problem with inserting at the beginning

Instead, we add a header – a few entries 
that are not cells, but hold information 
about the list
1. A pointer to the first element
2. A count of the number of elements



18

Linked list insertion

Initial list

Insert a 5 
at end

Insert an 8 
after the 1

5 2 2
1 2 3

0 1 3
4 5 6

X X X
7 8 9

X X X X
10 11 12 13

5 3 2
1 2 3

7 1 3
4 5 6

5 0 X
7 8 9

X X X X
10 11 12 13

1 2 3 4 5 6 7 8 9

5 4 2 7 1 9 5 0 8 3 X X X
10 11 12 13

11 5 2
1 2 3

0 1 9
4 5 6

5 0 8
7 8 9

3 6 5 X
10 11 12 13

Insert a 6 
at the start

First element 
starts at 5 Size of list is 2



Linked list deletion
We can also delete cells

Simply update the header and change one 
pointers (to skip over the deleted 
element)

Deleting things is the source of many bugs 
in computer programs
– You need to make sure you delete something 

once, and only once

19



20

Linked list deletion

Initial list

Delete the 
last cell

Delete the 8

5 3 2
1 2 3

0 1 9
4 5 6

5 0 8
7 8 9

3 X X X
10 11 12 13

1 2 3 4 5 6 7 8 9

5 2 2 0 1 3 5 0 8 3 X X X
10 11 12 13

Delete the 
first cell

1 2 3 4 5 6 7 8 9

5 4 2 7 1 9 5 0 8 3 X X X
10 11 12 13

1 2 3 4 5 6 7 8 9

3 1 2 0 1 3 5 0 8 3 X X X
10 11 12 13



Linked lists – running time

We can insert an item (at the front) in 
constant (O(1)) time
– Just manipulating the pointers
– As long as we know where to allocate the cell

We can delete an element (at the front) in 
constant time

21



Linked lists – running time

What about inserting / deleting from the 
end of the list?

How can we fix this?

22



23

Doubly linked lists

8 4 1 3

3148



24

A doubly-linked list in memory

4 7 2

1 2 3

0 8 7

4 5 6

4 4 0

7 8 9

48

First element

Last element
Size of list


	Linked lists
	Administrivia
	Making quickselect fast on non-random input
	Slide Number 4
	Conditionals with multiple branches
	Conditionals with multiple branches
	Last time
	Last time
	Linked lists
	Linked lists
	Linked lists as memory arrays
	A few details
	Example
	Traversing a linked list
	Inserting an element – arrays
	Inserting an element – linked lists
	Adding a header
	Linked list insertion
	Linked list deletion
	Linked list deletion
	Linked lists – running time
	Linked lists – running time
	Doubly linked lists
	A doubly-linked list in memory

