
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs11
12/2022fa/

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Previous lecture

○ Variables and assignment
○ Built-in functions, input and output

● Today’s lecture
○ Tips and good practices for writing a program
○ Branching (conditional statements)

● Announcements
○ Project 1 has been posted [due W 9/7]

■ Go to office hours/consultant hours!
● Online office hours uses queue me in! Check website for information.

■ Fill out CMS poll (by Wed. night) if you would like us to assign you a
partner

■ Post questions on Ed [link to Ed on front page of website]
○ Poll everywhere questions will be graded from Thursday onwards.

■ Check out Ed for setup instructions

Recap

% Example 1_1: Surface area of a sphere

% r: radius of the sphere [unit]

% A: surface area of the sphere [unit^2]

r = input('Enter the radius: ');

A = 4*pi*r^2;

fprintf('Surface area is %f!\n', A);

A, r are called
variables. Variables are
a named memory
space to store a value.

= is the assignment
operator. It allows us to
store values in variables.

Any % not in single or double
quotes denotes a comment.

Semicolons should end almost all lines of MATLAB code.
● Semicolon → suppresses printing of the result of assignment

statement
● No semicolon → prints out the results of assignment statement
● For now, put semicolon at the end of each line of MATLAB code

except for comments.

All lines of code comprise a
script or program.

Formatting operators
Inside single or double quotes, % becomes a formatting operator.
Formatting operators allow you to convert data stored in a variable to
text so it can be printed. %_ allows you to choose the formatting
method:

%f fixed point (or floating point)

%d decimal (best for integers)

%e exponential

 %g general–MATLAB chooses a format

 %c character

 %s string

For more on formatting operators, check out: https://www.mathworks.com/help/matlab/matlab_prog/formatting-strings.html

You will need
this page for
tomorrow’s
discussion
exercises.

% Example 1_1: Surface area of a sphere

% A: surface area of the sphere

% r: radius of the sphere

r = input('Enter the radius: ');

A = 4*pi*r^2;

fprintf('Surface area is %f!\n', A)

Symbol to indicate that
the rest of the line is a
comment–not to be
executed as code

Inside single quotes, it becomes a
formatting operator.

%f is replaced by the value stored in A

Comments

● For readability!
● A comment starts with % and goes to the end of the line
● Start each program (script) with a concise description of what it

does
● Define each important variable/constant

Tips for writing a program

● Check that you know what things you have as inputs
● Start by writing out the inputs and the outputs then write the steps

you need to get from inputs to outputs
● Add comments for readability
● Use variable names that make sense

What’s next?

● So far, all of the statements in our scripts are executed in order
● We do not have a way to specify that some statements should be

executed only under certain conditions
● We need a new language construct…

IF

Motivating example: strictly increasing quadratic

Consider the quadratic function q(x) = x2 + bx + c on the interval
[L, R]. This would be a parabola facing upwards.

Task: Write a code fragment that prints “Increasing” if q(x) is strictly
increasing across the interval and “Not increasing” if it does not.

To solve this problem, we need to know what criteria must be met for q(x) to be strictly increasing on [L, R].

Strictly increasing quadratic

Consider the critical point xc = -b/2.

Criteria:

xc xc xc

If xc ≤ L,
Print 'Increasing'.

Otherwise,
Print 'Not increasing'.

This way of planning how to write a program is
called pseudocode.

Pseudocode: Informal way of writing programs
that a human can easily understand

Strictly increasing quadratic

% Determine if the quadratic function q(x) = x^2 + bx + c
% strictly increases over interval [L, R].

b = input('Input the coefficient b: \n');
c = input('Input the coefficient c: \n');
L = input('Input the left endpoint L: \n');
R = input('Input the right endpoint R, L < R: \n');

xc = -b/2;
if ____________

fprintf('Increasing\n');
else

fprintf('Not increasing\n');
end

Relational Operators

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
~= Not equal to

Last slide we said we wanted the criteria xc ≤ L…

Strictly increasing quadratic

% Determine if the quadratic function q(x) = x^2 + bx + c
% strictly increases over interval [L, R].

b = input('Input the coefficient b: \n');
c = input('Input the coefficient c: \n');
L = input('Input the left endpoint L: \n');
R = input('Input the right endpoint R, L < R: \n');

xc = -b/2;
if xc <= L

fprintf('Increasing\n');
else

fprintf('Not increasing\n');
end

Relational Operators

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
~= Not equal to

The if construct

if [boolean expression 1]

[Statements to be executed if expression 1 evaluated to true]

elseif [boolean expression 2]

[statements to be executed if expression 1 evaluates to false

 but expression 2 evaluates to true]

:

else

[statements to be executed if all previous expressions

 evaluate to false]

end
if xc <= L

fprintf('Increasing\n');

else

fprintf('Not increasing\n');

end

Things to know about the if construct

● At most one branch of the statements is executed
● There can be any number of elseif clauses
● There can be at most one else clause
● The else clause must be the last clause in the construct (if there

is one)
● The else clause does not have a condition
● NO SEMICOLON after if, elseif, else, and end lines

Example 2 - where is the critical point?

Consider the quadratic function q(x) = x2 + bx + c on the interval
[L, R]. Print “inside” if xc is inside the interval, “left” if xc is to the left of
the interval, or “right” if xc is to the right of the interval.

xc xc xc

 Print “left” Print “inside” Print “right”

Example 2 - where is the critical point?
Consider the quadratic function q(x) = x2 + bx + c on the interval [L, R]. Print “inside” if xc
is inside the interval, “left” if xc is to the left of the interval, or “right” if xc is to the right of the
interval.

% Determine if the critical point of q(x) = x^2 + bx + c
% is left, right, or inside the interval [L,R].
b = input('Input the coefficient b: \n');
c = input('Input the coefficient c: \n');
L = input('Input the left endpoint L: \n');
R = input('Input the right endpoint R, L < R: \n');

xc = -b/2;
if xc <= R && xc >= L
 fprintf('Inside\n');
elseif xc < L
 fprintf('Left\n');
else
 fprintf('Right\n');
end

&& is a logical operator. Here it means
that both the xc <= R and xc >= L
conditions must be true for the
computer to print 'Inside'.

Logical operators
&& logical and: Are both conditions true?

Example - “is L ≤ xc and xc ≤ R?”
In code - L <= xc && xc <= R

|| logical or: Is at least one condition true?

Example - “is xc ≤ L or R ≤ xc?”
In code - xc <= L || R <= xc

~ logical not: negation

Example - “is xc not outside [L,R]?”
In code - ~(xc < L || R < xc)

