
◼ Previous Lecture:
◼ OOP: Access modifiers & inheritance

◼ Today, Lecture 25:
◼ Recursion

◼ Announcements:
◼ Project 6A code is available

◼ Description still being refined, but draft is available

◼ More reading than writing

◼ Final exam May 24
◼ Conflict survey coming this weekend; reply ASAP

◼ Course evaluation survey next week
◼ Anonymous responses, but credit for submitting it

By Elsamuko, Creative Commons Attribution-Share Alike 2.0 Generic license



Recursion

A method of problem solving by breaking a problem into 

smaller and smaller instances of the same problem until an 

instance is so small that it’s trivial to solve



Fibonacci sequence

Sequence

𝑓1 = 1, 𝑓2 = 1
𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2

f(1)= 1; f(2)= 1
for k = 3:n

f(k)= f(k-1) + f(k-2);

end

Function

𝑓 𝑛 = ቊ
1, 𝑛 < 3

𝑓(𝑛 − 1) + 𝑓(𝑛 − 2), 𝑛 ≥ 3

function y = f(n)
if n < 3

y = 1;
else

y = f(n-1) + f(n-2);
end

end



Recursion

◼ The Fibonacci sequence is defined recursively:
F(1)=1,  F(2)=1,

F(3)= F(1) + F(2) = 2

F(4)= F(2) + F(3) = 3

It is defined in terms of itself; its definition invokes itself.  

◼ Algorithms, and functions, can be recursive as well.  I.e., a function can 
call itself.

◼ Example:  remove all occurrences of a character from a string

‘gc aatc gga c ’ → ‘gcaatcggac’

F(k) = F(k-2) + F(k-1)



Example: removing all occurrences of a character

◼ Can solve using iteration—check one character 

(one component of the vector) at a time

Subproblem 1:
Keep or discard s(1)

‘c’ ‘s’ ‘ ’ ‘1’ ‘1’ ‘1’ ‘2’

1 2 … k …

s

Subproblem 2:
Keep or discard s(2)

Subproblem k:
Keep or discard s(k)

Iteration:

Divide problem 

into sequence of 

equal-sized, 

identical 

subproblems
See RemoveChar_loop.m



Example: removing all occurrences of a character

◼ Can solve using recursion

◼ Original problem:  remove all the blanks in string s

◼ Decompose into two parts:  1. remove blank in s(1)

2. remove blanks in s(2:length(s))

Original problem

Decompose into 2 parts Decompose

Decompose

Decompose

Decompose

‘ ’



function s = removeChar(c, s)

% Return string s with character c removed

if length(s)==0  % Base case: nothing to do

return

else

end



function s = removeChar(c, s)

% Return string s with character c removed

if length(s)==0  % Base case: nothing to do

return

else

if s(1)~=c

% return string is 

% s(1) and remaining s with char c removed

else

% return string is just 

% the remaining s with char c removed

end

end



function s = removeChar(c, s)

% Return string s with character c removed

if length(s)==0  % Base case: nothing to do

return

else

if s(1)~=c

% return string is 

% s(1) and remaining s with char c removed

s= [s(1) removeChar(c, s(2:length(s)))];

else

% return string is just 

% the remaining s with char c removed

s= removeChar(c, s(2:length(s)));

end

end



function s = removeChar(c, s)

% Return string s with character c removed

if length(s)==0  % Base case: nothing to do

return

else

if s(1)~=c

% return string is 

% s(1) and remaining s with char c removed

s= [s(1) removeChar(c, s(2:length(s)))];

else

% return string is just 

% the remaining s with char c removed

s= removeChar(c, s(2:length(s)));

end

end



function s = removeChar(c, s)

if length(s)==0 

return

else

if s(1)~=c

s= [s(1) removeChar(c, s(2:length(s)))];

else

s= removeChar(c, s(2:length(s)));

end

end

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar('_', 'd_o_g')



function s = removeChar(c, s)

if length(s)==0 

return

else

if s(1)~=c

s= [s(1) removeChar(c, s(2:length(s)))];

else

s= removeChar(c, s(2:length(s)));

end

end

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call

c _

_ o gs _

[       ]

removeChar – 3rd call

c _

o gs _

[       ]o

removeChar – 4th call

c _

gs _

[       ]

removeChar – 5th call

c _

gs

[       ]g

1

2

3

4

removeChar('_', 'd_o_g')



function s = removeChar(c, s)

if length(s)==0 

return

else

if s(1)~=c

s= [s(1) removeChar(c, s(2:length(s)))];

else

s= removeChar(c, s(2:length(s)));

end

end

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call

c _

_ o gs _

[       ]

removeChar – 3rd call

c _

o gs _

[       ]o

removeChar – 4th call

c _

gs _

[       ]

removeChar – 5th call

c _

gs

[       ]g

removeChar – 6th call

c _

s ‘’

1

2

3

4

5 removeChar('_', 'd_o_g')



function s = removeChar(c, s)

if length(s)==0 

return

else

if s(1)~=c

s= [s(1) removeChar(c, s(2:length(s)))];

else

s= removeChar(c, s(2:length(s)));

end

end

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call

c _

_ o gs _

[       ]

removeChar – 3rd call

c _

o gs _

[       ]o

removeChar – 4th call

c _

gs _

[       ]

removeChar – 5th call

c _

gs

[       ]g

removeChar – 6th call

c _

s ‘’

‘’

1

2

3

4

5 removeChar('_', 'd_o_g')



function s = removeChar(c, s)

if length(s)==0 

return

else

if s(1)~=c

s= [s(1) removeChar(c, s(2:length(s)))];

else

s= removeChar(c, s(2:length(s)));

end

end

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call

c _

_ o gs _

[       ]

removeChar – 3rd call

c _

o gs _

[       ]o

removeChar – 4th call

c _

gs _

[       ]

removeChar – 5th call

c _

gs

[       ]g

removeChar – 6th call

c _

s ‘’

‘’

ggo go g

d o g

1 removeChar('_', 'd_o_g')



Key to recursion

◼ Must identify (at least) one base case, the “trivially simple” case

◼ no recursion is done in this case

◼ The recursive case(s) must reflect progress towards the base case

◼ E.g., give a shorter vector as the argument to the recursive call – see 
removeChar



function s = removeChar(c, s)

if length(s)==0 

return

else

if s(1)~=c

s= [s(1) removeChar(c, s(2:length(s)))];

else

s= removeChar(c, s(2:length(s)));

end

end

How many call frames are opened (used) in executing 
each of the following statements?

>>  st= removeChar('t', 'Matlab');
>>  sx= removeChar('x', 'Matlab');

A 3, 0 B 4, 1 C 3, 6 D 6, 6 E 7, 7



Divide-and-conquer methods, such as recursion, 

is useful in geometric situations

Chop a region up into 

triangles with smaller 

triangles in “areas of 

interest”

3D Graphics: Level of 

Detail

Recursive mesh generation



Mesh refinement

When physics is too 

complicated for one big 

region, divide it into two 

smaller regions.

◼ Subproblem: solve physics 

inside one region

◼ Division: split region in half

◼ Base case: solution looks 

smooth in entire region

Nilsson, Gerritsen, Younis 2004



Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic



Start with a triangle



A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) 

triangle to obtain the “level-2” partitioning



The “level-2” partition of the triangle



The “level-3” partition of the triangle



The “level-4” partition of the triangle



The “level-4” partition of the triangle



The basic operation at each level

if the triangle is small

Don’t subdivide and just color it yellow.

else

Subdivide: 

Connect the side midpoints;

color the interior triangle magenta;

apply same process to each outer triangle:

left, right, top;

end



function MeshTriangle(x,y,L)

% x,y are 3-vectors that define the vertices of a triangle.

% Draw level-L partitioning.  Assume hold is on.

if L==0

% Recursion limit reached; no more subdivision required.

fill(x,y,'y')  % Color this triangle yellow

else

% Need to subdivide: determine the side midpoints; connect

% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end



function MeshTriangle(x,y,L)

% x,y are 3-vectors that define the vertices of a triangle.

% Draw level-L partitioning.  Assume hold is on.

if L==0

% Recursion limit reached; no more subdivision required.

fill(x,y,'y')  % Color this triangle yellow

else

% Need to subdivide: determine the side midpoints; connect

% midpts to get “interior triangle”; color it magenta.

a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];

b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];

fill(a,b,'m')

% Apply the process to the three "corner" triangles...

MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)

MeshTriangle([a(1) x(2) a(2)],[b(1) y(2) b(2)],L-1)

MeshTriangle([a(3) a(2) x(3)],[b(3) b(2) y(3)],L-1)

end



Key to recursion

◼ Must identify (at least) one base case, the “trivially simple” case

◼ No recursion is done in this case

◼ The recursive case(s) must reflect progress towards the base case

◼ E.g., give a shorter vector as the argument to the recursive call – see 
removeChar

◼ E.g., do a lower level of subdivision in the recursive call – see 
MeshTriangle



Recursion can be useful in different settings

examples

myFiles

cs1112

cs1132

cs3220

lecture

exercises

projects

exams

reading

exercises

slides


