= Previous Lecture:
= Vectorized operations
= Introduction to 2-d array—matrix

= Today, Lecture 14:
= Examples on computing with matrices
= Pre-reading: 7.1 (transition probability matrices)
= Post-reading: contour plots, PDEs (7.2, 7.3 in Insight)

= Announcements:
= Prelim 1 tonight at 6:30pm
= Barton Hall, west entrance; see CMS for seat assignment
= Online: see Canvas for Zoom, Gradescope links
= Project 4 posted by Thurs, due April 8

Pattern for traversing a matrix M

—

[nr, nc] = size(M) >7

for r= l:nr >
% At row r S
for ¢= l:nc L |

% At column c (in row r)
%
7% Do something with M(r,c) ...
end
end

Exercise: what’s different about this version?

function val = minInMatrix(M)

val= M(1,1);
[nr, nc] = size(M);
for ¢ = 1:nc
for r = 1:nr
if M(r,c) < val
val= M(r,c);
end
end
end

|
|

§ o
o.ncoi"ig
mBolo o B> 2

@ ¢

+

—

/ \

N
p
N

L—

A Cost/Inventory Problem

= A merchant has 3 supplier warehouses that
stock 5 different products

m The cost of a product varies from warehouse
to warehouse

= The inventory varies from warehouse to
warehouse

Problems

A customer submits a purchase order that

is to be shipped from a single warehouse.

|. How much would it cost a warehouse to fill
the order?

2. Does a warehouse have enough inventory to
fill the order?

3. Among the warehouses that can fill the order,
who can do it most cheaply?

Available data

C(i,7j) iswhatit
costs warehouse i
to supply product |

Inv(i,j) is the
inventory in
warehouse i of
product j

PO (j) is the number

of product j’s that
the client wants

DEEDE

e[z e
DEEEE
DEDED

tov (o2l o3[e o
DEEGH

20| 1] of1z|29] 5

DERED

o [l
DEDEE

l
o |1 fo fazlas]s | g%

y,, Ve
Cost for 9€n£/eJ e
warehouse 1: Uz,

1*10 + 0*36 + 12*22 + 29* 15 + 5*62

C

PO

Cost for

warehouse 1:

DEREE

[[a[e
DEDEE

o [z]aofs

= 0, %Sum of cost
for J=1:5 % n cols

s =s + C(1,3)*PO(3)
end

o] 36| z2)s] 62

o i 3 K
sforf]

o |1 fo szfzs]s

Cost for = 0; %Sum of cost
warehouse 2: for j=1:5
s =s + C(2,])*PO(3])
end

o] 36| z2)s] 62

o i 3 K
sforf]

o |1 fo szfzs]s

Cost for = 0; $%$Sum of cost

warehouse i: for j=1:5
s =s + C(1,3)*PO(3)
end

Encapsulate...

function theBill = iCost(i,C, PO)
$ The cost when warehouse 1 fills the

% purchase order

nProd= length(PO); oV Si%e(c/ 9\)
theBill= O;
for j 1l:nProd

theBill= theBill + C(i,j)*PO(j);

end

Finding the Cheapest

Both which warehouse and how cheap

iBest= 0; minBill=@

for 1 = 1:nSuppliers
iBill= iCost(i,C,PO);
if iBill < minBill
% Found an Improvement
iBest= 1i; minBill= iBill;
end

end

Aside: floating-point “bonus numbers”

= 1nf: Represents “infinity”
= Both positive and negative versions
s Larger (or smaller) than any other number

= Generated on overflow or when dividing by zero

= han: Not-a-number

= Not equal to anything (even itself)
= Not greater-than or less-than anything (even int)
= Generated from 0/0, inf*o, ...

= If involved in mathematical operation, result will be nan

Inventory/Capacity Considerations

What if a warehouse lacks the inventory to fill the
purchase order?

Such a warehouse should be excluded from the
find-the-cheapest computation.

Who Can Fill the Order?

S -
| e
s [w] e[w] v

o |1 fo |12fa8]s

Wanted: A True/False Function

Inv i1CanDo DO
PO

DO is “true" if warehouse i can fill the order.

DO is "false" if warehouse i cannot fill the order.

Example: Check inventory of warehouse 2

8] 3 |59 34] 42

Inv

EEEED

Initialization

B

AoEDBn
EEBED

o |1 fo iz|zs]s

DO

Still True...

S

M ECEaieE
EEEED

o [afo izfzs]s

DO = (Inv(2,1) >= PO(1))

Still True...

B

o [l =[] oo s
EDEED

o |1 [ofz2s]s

DO

DO && (Inv(2,2) >= PO(2))

Still True...

8|5 [so) 34|42

MoE EoieE
EEEED

o |1 [o |a2las]s

DO

DO && (Inv(2,3) >= PO(3))

No Longer True...

BRI

o [l o[ol 7] oo
EEEEn

o |1 [o |12f28]s

DO

DO && (Inv(2,4) >= PO(4))

Stay False...

B

AoEcE B
EEBED

o |1 fo 1z|2os

DO

DO && (Inv(2,5) >= PO(5))

Encapsulate...

iCanDo (1, Inv, PO)

% DO 1s true i1f warehouse 1 can fill

function DO

% the purchase order. Otherwise, false

nProd= length (PO) ;
DO= 1;
for j 1l:nProd

DO= DO && (Inv(i,j) >= PO(3));

end

Encapsulate...

iCanDo (1, Inv, PO)

% DO 1s true i1f warehouse 1 can fill

function DO

% the purchase order. Otherwise, false

nProd= length (PO) ;

J= 1;

while j<=nProd && Inv(i,j)>=PO(])
=3 + 1;

U
end |2 $10P as S‘\’h?h-\c\(\ yhere
= . ¢
DO ’ N\e,‘W\O prod\,\C‘Y {m\la“-\o(‘\l

Encapsulate...

function DO iCanDo (i, Inv, PO)

% DO 1is true if warehouse 1 can fill

% the purchase order. Otherwise, false
nProd= length (PO) ;

J= 1;

while j<=nProd && Inv(i,j)>=PO(])

=3 + 1; DO should be true when...

end [A]J < nProd
DO= e 'Blj == nProd
Ej > nProd

iClicker +

Encapsulate...

iCanDo (1, Inv, PO)

% DO 1s true i1f warehouse 1 can fill

function DO

% the purchase order. Otherwise, false
nProd= length (PO) ;

J= 1;
while j<=nProd && Inv(i,j)>=PO(J)

j= 3 + 1; inv R
end 819154

DO= (j>nProd) ;

0|7 (3 |63
N L/

Back To Finding the Cheapest

iBest= 0; minBill= inf;

for

i = l:nSuppliers

iBill= iCost(i,C,PO);

if iBill < minBill

% Found an Improvement

iBest= i; minBill= 1iBill;

end

end

Back To Finding the Cheapest

iBest= 0; minBill= inf;

for i = l:nSuppliers
if iCanDo (i, Inv,PO)

iBill= iCost(1,C,PO) ;

if iBill < minBill

% Found an Improvement
iBest= i; minBill= iBill;

end

end

end See Cheapest.m

for alternative implementation

Finding the Cheapest

DERED
c [z m]e] w0 wo
DEEEER
o [(ELEE 1t

As

compu’red computed
by iCost by iCanDo

Matrix example: Random Web

= N web pages can be represented by an
N-by-N Link Array A.

= A(i,J) is1ifthereisalink on webpage j to

webpage 1 19€
/

0010/100

100(id110

0101111

Sut Pyt doeg ~ 11010

o [oo (0011011

0010101

o P {f 0110110

70

Matrix example: Random Web

= N web pages can be represented by an
N-by-N Link Array A.

m A(i,j) is 1 if there is a link on webpage j to

webpage i

= Generate a random link array and display the

connectivity:
= There is no lin
s |f iz then A(,

< from a page to itself 0
1

<

) =1 with probability 1+i—j|

ﬂThere is more likely to be a link if i is close to |

function A = RandomLinks (n)
% A i1s n-by-n matrix of 1s and Os
% representing n webpages

A= zeros(n,n); % initialize to Os
for i = 1:n
for j = 1:n
% 1f A(1,]J) not on diagonal,
% assign 1 with some probability

end
end

An event happens with probability p, 0<p<I

% Flip a fair coin % Unfair coin: shows heads
r= rand() ; % twice as often as tails
if r<<<::>"’P r= rand () ;

disp(‘heads’) if r < P
else disp(‘heads’)

disp(‘tails’) else
end disp(‘tails’)

end

% Event X happens with probability p
r= rand() ;
if r < p
% Code for event X
end

function A = RandomLinks (n)
% A is n-by-n matrix of 1s and Os
% representing n webpages

A= zeros(n,n) ;
for 1i = 1:n
for j = 1:n
| r= rand() ;|
if i~=] && Q< 1/(1 + abs(i-j))};
A(1,J)= 1;

end
end
end

