
CS 1112 Test 2B Review

What we’ll do today

•Review of these topics:
•Cell arrays
• File input/output
• Objects and classes
• sort() and permutation indices

• Some example problems

•Questions

Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars
together form a string, but a string is not a type – it is just an array of characters.
Array of characters: s = ‘CS1112’; s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean. Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type. A cell array is a special
kind of array that can hold data of different types. Yay!

Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars
together form a string, but a string is not a type – it is just an array of characters.
Array of characters: s = ‘CS1112’; s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean. Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type. A cell array is a special
kind of array that can hold data of different types. Yay!

Cell arrays
Arrays (e.g. vectors, matrices, 3-D arrays, etc.)
• Can hold one scalar value in each of its components,

e.g. one double, one char, one uint8.
• Data of all components must be the same type

Cell arrays
• Each cell can store something “larger” than a scalar (but doesn’t have to).

Can store a vector in a single component, or a matrix, or a string, etc.
• Each cell can store something of a different type

Cell arrays
Arrays (e.g. vectors, matrices, 3-D arrays, etc.)
• Can hold one scalar value in each of its components,

e.g. one double, one char, one uint8.
• Data of all components must be the same type

Cell arrays
• Each cell can store something “larger” than a scalar (but doesn’t have to).
• Can store a vector, matrix, or string, etc. in a single component
• Each cell can store something of a different type

Cell arrays
Initialize a cell array with cell(…) function c = cell(1,3);

% Cell array with 1 row, 3 columns

Obtain number of rows and columns [nr, nc] = size(c);
% Same as for other arrays

Put items (strings, in this case) into the cell array c = {'matlab', 'is', 'fun'};
% Commas optional

Display first item (string in this example) disp(c{1})
% Note the use of curly braces

Display first two items (vectorized) disp(c(1:2))
% Note the use of parentheses

Display first three letters of first string disp(c{1}(1:3))
% Note the use of curly braces and parentheses

Concatenate the strings (produces ‘matlab is fun’) s = [c{1} ‘ ’ c{2} ‘ ’ c{3}]
% Note the use of square brackets to create a string

Fall 2016 Prelim: Question 5b

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :));
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k <= length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2);
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b

rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :), ‘,’);
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k <= length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2);
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b

rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :), ‘,’);
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k <= length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2);
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b

rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :), ‘,’);
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k < length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2); % After last comma, take all remaining characters
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b

rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :), ‘,’);
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k < length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2); % After last comma, take all remaining characters
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b

File input/output

• Open a file: fopen()
• Read it line-by-line until end-of-file: fgetl(), feof()
• Write data into a file: fprintf()
• Close a file: fclose()

File input/output: Open/close a file

Syntax: fid = fopen(filename, ‘r’);
 fclose(fid);

• fid stores file ID of the opened file, used as input later
• Permission ‘r’ indicates that we are reading the file

- ‘w’ when writing into file after discarding all existing content
- ‘a’ when appending to the end of the file

● ; needed after file commands

Syntax: fid = fopen(‘statePop.txt’, ‘r’);
 while ~feof(fid)

 str = fgetl(fid);

end

 fclose(fid);

• ~feof(fid) returns false only if we reached the end-of-file
• fgetl(fid) gives next line (1 line) as string/char array
• Can read only part of file by replacing the ~feof(fid) condition

File input/output: Read line-by-line until end

Syntax: fid = fopen(‘statePop.txt’, ‘r’);
i = 1;

 while ~feof(fid)
 str = fgetl(fid);
 pop(i) = str2double(str(3:7));
 i = i + 1;
end

 fclose(fid);

• str2double converts a string representing a numeric value to a
scalar numeric value of type double
- E.g: x = str2double(‘-3.24’) → x = -3.24

File input/output: Store data into vector/array

Syntax: fid = fopen(‘popSm2Lg.txt’, ‘w’);
 for i = 1:length(Cnew)
 fprintf(fid, ‘%s\n’, Cnew{i});
 end
 fclose(fid);

• fprintf(fid, ...) prints on the file with ID fid
• ‘%s\n’ specifies to print Cnew{i} in string format

File input/output: Write into file

Fall 2019 Prelim: Question 6.1

Thing we need to do Programming concept needed to do this thing

1 Open the file and read each line of data.
Use fopen() to open the file, set a while-loop with feof() to traverse to

the end of the file, and grab each line with fgetl().
After we’re done, close the file with fclose().

2 Given a line, find locations where the two spaces occur. Set a for-loop that goes through a line from the file, and check where
the two-space separators are at using strcmp() and an if-block.

3 Find and store the city name, latitude, and longitude into
correct cells in cell array D.

Use the for-loop index to find where the data token starts/ends.
Extract the char sub-array from the line.

Initialize indices for D and use them with proper increments to assign
data tokens to correct cells in D.

4 Get the population as a double and store in cell array D. Use str2double() to change the last data token into a double, then
store in the last column of D.

Fall 2019 Prelim: Question 6.1

Thing we need to do Programming concept needed to do this thing

1 Open the file and read each line of data.
Use fopen() to open the file, set a while-loop with feof() to traverse to

the end of the file, and grab each line with fgetl().
After we’re done, close the file with fclose().

2 Given a line, find locations where the two spaces occur. Set a for-loop that goes through a line from the file, and check where
the two-space separators are at using strcmp() and an if-block.

3 Find and store the city name, latitude, and longitude into
correct cells in cell array D.

Use the for-loop index to find where the data token starts/ends.
Extract the char sub-array from the line.

Initialize indices for D and use them with proper increments to assign
data tokens to correct cells in D.

4 Get the population as a double and store in cell array D. Use str2double() to change the last data token into a double, then
store in the last column of D.

Fall 2019 Prelim: Question 6.1

Thing we need to do Programming concept needed to do this thing

1 Open the file and read each line of data.
Use fopen() to open the file, set a while-loop with feof() to traverse to

the end of the file, and grab each line with fgetl().
After we’re done, close the file with fclose().

2 Given a line, find locations where the two spaces occur. Set a for-loop that goes through a line from the file, and check where
the two-space separators are at using strcmp() and an if-block.

3 Find and store the city name, latitude, and longitude into
correct cells in cell array D.

Use the for-loop index to find where the data token starts/ends.
Extract the char sub-array from the line.

Initialize indices for D and use them with proper increments to assign
data tokens to correct cells in D.

4 Get the population as a double and store in cell array D. Use str2double() to change the last data token into a double, then
store in the last column of D.

Fall 2019 Prelim: Question 6.1

Thing we need to do Programming concept needed to do this thing

1 Open the file and read each line of data.
Use fopen() to open the file, set a while-loop with feof() to traverse to

the end of the file, and grab each line with fgetl().
After we’re done, close the file with fclose().

2 Given a line, find locations where the two spaces occur. Set a for-loop that goes through a line from the file, and check where
the two-space separators are at using strcmp() and an if-block.

3 Find and store the city name, latitude, and longitude into
correct cells in cell array D.

Use the for-loop index to find where the data token starts/ends.
Extract the char sub-array from the line.

Initialize indices for D and use them with proper increments to assign
data tokens to correct cells in D.

4 Get the population as a double and store in cell array D. Use str2double() to change the last data token into a double, then
store in the last column of D.

Fall 2019 Prelim: Question 6.1

Thing we need to do Programming concept needed to do this thing

1 Open the file and read each line of data.
Use fopen() to open the file, set a while-loop with feof() to traverse to

the end of the file, and grab each line with fgetl().
After we’re done, close the file with fclose().

2 Given a line, find locations where the two spaces occur. Set a for-loop that goes through a line from the file, and check where
the two-space separators are at using strcmp() and an if-block.

3 Find and store the city name, latitude, and longitude into
correct cells in cell array D.

Use the for-loop index to find where the data token starts/ends.
Extract the char sub-array from the line.

Initialize indices for D and use them with proper increments to assign
data tokens to correct cells in D.

4 Get the population as a double and store in cell array D. Use str2double() to change the last data token into a double, then
store in the last column of D.

Fall 2019 Prelim: Question 6.1

Thing we need to do Programming concept needed to do this thing

1 Open the file and read each line of data.
Use fopen() to open the file, set a while-loop with feof() to traverse to

the end of the file, and grab each line with fgetl().
After we’re done, close the file with fclose().

2 Given a line, find locations where the two spaces occur. Set a for-loop that goes through a line from the file, and check where
the two-space separators are at using strcmp() and an if-block.

3 Find and store the city name, latitude, and longitude into
correct cells in cell array D.

Use the for-loop index to find where the data token starts/ends.
Extract the char sub-array from the line.

Initialize indices for D and use them with proper increments to assign
data tokens to correct cells in D.

4 Get the population as a double and store in cell array D. Use str2double() to change the last data token into a double, then
store in the last column of D.

Fall 2019 Prelim: Question 6.1

Thing we need to do Programming concept needed to do this thing

1 Open the file and read each line of data.
Use fopen() to open the file, set a while-loop with feof() to traverse to

the end of the file, and grab each line with fgetl().
After we’re done, close the file with fclose().

2 Given a line, find locations where the two spaces occur. Set a for-loop that goes through a line from the file, and check where
the two-space separators are at using strcmp() and an if-block.

3 Find and store the city name, latitude, and longitude into
correct cells in cell array D.

Use the for-loop index to find where the data token starts/ends.
Extract the char sub-array from the line.

Initialize indices for D and use them with proper increments to assign
data tokens to correct cells in D.

4 Get the population as a double and store in cell array D. Use str2double() to change the last data token into a double, then
store in the last column of D.

Fall 2019 Prelim: Question 6.1

Thing we need to do Programming concept needed to do this thing

1 Open the file and read each line of data.
Use fopen() to open the file, set a while-loop with feof() to traverse to

the end of the file, and grab each line with fgetl().
After we’re done, close the file with fclose().

2 Given a line, find locations where the two spaces occur. Set a for-loop that goes through a line from the file, and check where
the two-space separators are at using strcmp() and an if-block.

3 Find and store the city name, latitude, and longitude into
correct cells in cell array D.

Use the for-loop index to find where the data token starts/ends.
Extract the char sub-array from the line.

Initialize indices for D and use them with proper increments to assign
data tokens to correct cells in D.

4 Get the population as a double and store in cell array D. Use str2double() to change the last data token into a double, then
store in the last column of D.

Fall 2019 Prelim: Question 6.1

Fall 2019 Prelim: Question 6.1
function D = parseData(cityData)

fid = fopen(cityData, ‘r’);

r = 1;

while ~feof(fid)

s = fgetl(fid); c = 1; tStart = 1;

for k = 1:length(s)-1

if strcmp(s(k:k+1), ‘ ‘)

tEnd = k-1; D{r,c} = s(tStart:tEnd);

c = c+1; tStart = k+2;

end

end

D{r,4} = str2double(s(tStart:length(s)));

r = r+1;

end

fclose(fid);

Connection to previous slide:
Red: open file and read each line
Orange: go through line to find ‘ ‘
Green: find/store first 3 data tokens in D
Blue: store population as double in D

Fall 2019 Prelim: Question 6.1
function D = parseData(cityData)

fid = fopen(cityData, ‘r’);

r = 1;

while ~feof(fid)

s = fgetl(fid); c = 1; tStart = 1;

for k = 1:length(s)-1

if strcmp(s(k:k+1), ‘ ‘)

tEnd = k-1; D{r,c} = s(tStart:tEnd);

c = c+1; tStart = k+2;

end

end

D{r,4} = str2double(s(tStart:length(s)));

r = r+1;

end

fclose(fid);

Connection to previous slide:
Red: open file and read each line
Orange: go through line to find ‘ ‘
Green: find/store first 3 data tokens in D
Blue: store population as double in D

Fall 2019 Prelim: Question 6.1
function D = parseData(cityData)

fid = fopen(cityData, ‘r’);

r = 1;

while ~feof(fid)

s = fgetl(fid); c = 1; tStart = 1;

for k = 1:length(s)-1

if strcmp(s(k:k+1), ‘ ‘)

tEnd = k-1; D{r,c} = s(tStart:tEnd);

c = c+1; tStart = k+2;

end

end

D{r,4} = str2double(s(tStart:length(s)));

r = r+1;

end

fclose(fid);

Connection to previous slide:
Red: open file and read each line
Orange: go through line to find ‘ ‘
Green: find/store first 3 data tokens in D
Blue: store population as double in D

Fall 2019 Prelim: Question 6.1
function D = parseData(cityData)

fid = fopen(cityData, ‘r’);

r = 1;

while ~feof(fid)

s = fgetl(fid); c = 1; tStart = 1;

for k = 1:length(s)-1

if strcmp(s(k:k+1), ‘ ‘)

tEnd = k-1; D{r,c} = s(tStart:tEnd);

c = c+1; tStart = k+2;

end

end

D{r,4} = str2double(s(tStart:length(s)));

r = r+1;

end

fclose(fid);

Connection to previous slide:
Red: open file and read each line
Orange: go through line to find ‘ ‘
Green: find/store first 3 data tokens in D
Blue: store population as double in D

Objects and Classes

•Class: A file that specifies properties (variables) and methods
(functions) associated with the item that the class represents
• Contains a constructor, a special method that creates new objects

• Object: One instance of a class
• Objects of the same class have the same properties and the same methods

• The properties of objects of the same class can have different values

Objects and Classes Example: Animal
classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Note that the end keyword is
used to close the following:
1. The classdef
2. The properties section
3. The methods section
4. Each function inside the

methods section

Objects and Classes: Constructors

Constructor: A method (function) that creates a new object
• Must have the same name as the class

• Can take in parameters to set property values

• Use nargin to ensure that constructor can be called without any arguments

classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal

Implementation of this constructor:

function aml = Animal(n, s, a, hT)

if (nargin == 4)

aml.name = n;

aml.species = s;

aml.age = a;

aml.hasTail = hT;

end

end

If 4 arguments are not provided, the 4
properties will be set to default values.

Objects and Classes: Create/reference objects

Create new objects by calling the constructor, which returns a reference to
the new object that should be stored in a variable.

Example: a = Animal(‘Bobbert’, ‘pig’, 2, 1);
% An animal object with these properties is created:
% name = ‘Bobbert’, species = ‘pig’, age = 2, hasTail = 1
% a is the reference to this object.

Create an empty array of Animal objects using .empty()
Example: b = Animal.empty()

Check if an object/object array is empty using isempty(<reference>)
Example: isempty(a) returns 0, isempty(b) returns 1

Objects and Classes: Calling methods

Each method in a class takes in a minimum of one parameter (named
‘self’), which is a reference to the object calling the method

Syntax for calling a method:
<reference>.<methodName>(2nd through last input variable)

This is equivalent (but it is better to use the above way):

<methodName>(self, 2nd through last input variable)

classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal

How to use this method (from
another script, function, etc.):

% Object reference should be

% created first

a = Animal(‘Bobbert’, ‘pig’, 2, 1);

% Call method

a.birthday(); % or: birthday(a);

% See result of method call

disp(a.age) % 3 will be displayed

classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal

Implementation of this method:

function c = checkHasTail(self)

if (self.hasTail == 1)

c = 1;

else

c = 0;

end

end

classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal
Implementation of this method:
function c = isOlder(self, otherAnimal)

if (self.age > otherAnimal.age)

c = 1;

else

c = 0;

end

end

How to use this method:

a = Animal(‘Bobbert’, ‘pig’, 2, 1);

b = Animal(‘Robbert’, ‘frog’, 1, 0);

disp(a.isOlder(b)) % will display 1

disp(b.isOlder(a)) % will display 0

Age of a is 2

Age of b
is 1

Objects and Classes: Arrays of objects

Objects of the same class can
be stored in a simple vector/array.

Objects of different classes
(even classes which are related
by inheritance) must be stored in
a cell array.

Example: Write a function that takes in a
vector z of Animal objects and returns a
vector of the indices from z which contain
objects whose species is ‘pig’:

function idx = FindPigs(z)

idx = []; k = 1;

for i = 1:length(z)

if (strcmp(z(i).species, ‘pig’))

idx(k) = i;

k = k+1;

end

end

function idxs = greatestOverlap(iArray)

% Find the biggest pairwise overlap between Intervals in iArray.

% iArray is an array (length > 1) of Interval references.

% idxs is a vector of length 2 storing indices of the two Intervals

% in iArray that overlap the most. If there is not a pair of overlapping

% Intervals in iArray, idxs is an empty vector.

% Write efficient code: avoid unnecessary iteration

Potentially useful methods in the Interval class:
• getWidth(self) returns the difference between the left and right endpoints (i.e. the

width) of the Interval object referenced by self.
• overlap(self, other) returns an Interval object whose endpoints are the points

between which the two Interval objects, self and other, overlap. If they do not overlap,
this method returns an empty Interval object.

Review Question #7

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Review Question #7: Solution
function idxs = greatestOverlap(iArray)

idxs = [];

maxWidth = 0;

n = length(iArray);

for i = 1:n-1 % Notice this loop ends at n-1

for j = i+1:n % Notice this loop started at i+1

olap = iArray(i).overlap(iArray(j));

if ~isempty(olap) && olap.getWidth() > maxWidth

maxWidth = olap.getWidth();

idxs = [i j];

end

end

end

Connection to previous slide:
Red: for-loop to check combinations
Orange: find maximum overlap
Green: update idxs when max changes
Blue: idxs empty when no overlap

Review Question #7: Solution
function idxs = greatestOverlap(iArray)

idxs = [];

maxWidth = 0;

n = length(iArray);

for i = 1:n-1 % Notice this loop ends at n-1

for j = i+1:n % Notice this loop started at i+1

olap = iArray(i).overlap(iArray(j));

if ~isempty(olap) && olap.getWidth() > maxWidth

maxWidth = olap.getWidth();

idxs = [i j];

end

end

end

Connection to previous slide:
Red: for-loop to check combinations
Orange: find maximum overlap
Green: update idxs when max changes
Blue: idxs empty when no overlap

Review Question #7: Solution
function idxs = greatestOverlap(iArray)

idxs = [];

maxWidth = 0;

n = length(iArray);

for i = 1:n-1 % Notice this loop ends at n-1

for j = i+1:n % Notice this loop started at i+1

olap = iArray(i).overlap(iArray(j));

if ~isempty(olap) && olap.getWidth() > maxWidth

maxWidth = olap.getWidth();

idxs = [i j];

end

end

end

Connection to previous slide:
Red: for-loop to check combinations
Orange: find maximum overlap
Green: update idxs when max changes
Blue: idxs empty when no overlap

Review Question #7: Solution
function idxs = greatestOverlap(iArray)

idxs = [];

maxWidth = 0;

n = length(iArray);

for i = 1:n-1 % Notice this loop ends at n-1

for j = i+1:n % Notice this loop started at i+1

olap = iArray(i).overlap(iArray(j));

if ~isempty(olap) && olap.getWidth() > maxWidth

maxWidth = olap.getWidth();

idxs = [i j];

end

end

end

Connection to previous slide:
Red: for-loop to check combinations
Orange: find maximum overlap
Green: update idxs when max changes
Blue: idxs empty when no overlap

Syntax: [y, idx] = sort(x)
• Both outputs have same size as x.
• y stores entries of x in ascending order.
• idx stores the indices of the sorted arrangement: y = x(idx)

• To sort in descending order: [y, idx] = sort(x, ‘descend’)
• If input is a 2d-array, we can pick the dimension along which to sort:

- sort(x, 1) sorts each column (default)
- sort(x, 2) sorts each row

Built-in sort() and permutation indices

Built-in sort() and permutation indices

x:

y:

10 20 5 90 15

5 10 15 20 90

idx: 3 1 5 2 4

[y, idx] = sort(x)
idx(1) = 3 ⇔ x(3) is the smallest

y(1) = x(idx(1)) = x(3)

idx(2) = 1 ⇔ x(1) is the 2nd-smallest
y(2) = x(idx(2)) = x(1)

idx(5) = 4 ⇔ x(4) is the 5th-smallest
y(2) = x(idx(2)) = x(1)

y = x(idx)

Built-in sort() and permutation indices

x:

y:

10 20 5 90 15

5 10 15 20 90

idx: 3 1 5 2 4

[y, idx] = sort(x)
idx(1) = 3 ⇔ x(3) is the smallest

y(1) = x(idx(1)) = x(3)

idx(2) = 1 ⇔ x(1) is the 2nd-smallest
y(2) = x(idx(2)) = x(1)

idx(5) = 4 ⇔ x(4) is the 5th-smallest
y(2) = x(idx(2)) = x(1)

y = x(idx)

Built-in sort() and permutation indices

x:

y:

10 20 5 90 15

5 10 15 20 90

idx: 3 1 5 2 4

[y, idx] = sort(x)
idx(1) = 3 ⇔ x(3) is the smallest

y(1) = x(idx(1)) = x(3)

idx(2) = 1 ⇔ x(1) is the 2nd-smallest
y(2) = x(idx(2)) = x(1)

idx(5) = 4 ⇔ x(4) is the 5th-smallest
y(2) = x(idx(2)) = x(1)

y = x(idx)

Built-in sort() and permutation indices

x:

y:

10 20 5 90 15

5 10 15 20 90

idx: 3 1 5 2 4

[y, idx] = sort(x)
idx(1) = 3 ⇔ x(3) is the smallest

y(1) = x(idx(1)) = x(3)

idx(2) = 1 ⇔ x(1) is the 2nd-smallest
y(2) = x(idx(2)) = x(1)

idx(5) = 4 ⇔ x(4) is the 5th-smallest
y(5) = x(idx(5)) = x(4)

y = x(idx)

Built-in sort() and permutation indices

x:

y:

10 20 5 90 15

5 10 15 20 90

idx: 3 1 5 2 4

[y, idx] = sort(x)
idx(1) = 3 ⇔ x(3) is the smallest

y(1) = x(idx(1)) = x(3)

idx(2) = 1 ⇔ x(1) is the 2nd-smallest
y(2) = x(idx(2)) = x(1)

In vector notation, y = x(idx)

idx(5) = 4 ⇔ x(4) is the 5th-smallest
y(5) = x(idx(5)) = x(4)

function Pts = sortPoints(Pts)

% Given an array of Point objects Pts where each object has two properties,

% x and y, sort Pts so that the objects are in the order of

% increasing distance from (0,0)

Review Question #4

Review Question #4

Thing we need to do Programming concept needed to do this thing

1 Find distances from (0,0) to all Point objects Set a for-loop to use each Point object in Pts

2 Compute and store distances for each point
For each Point object, compute the distance

with the x and y properties. Then append/store in
the corresponding spot of a vector.

3 Sort points in order of increasing distance Use sort() on the distance vector, then use the
permutation indices to re-order objects in Pts.

Review Question #4

Thing we need to do Programming concept needed to do this thing

1 Find distances from (0,0) to all Point objects Set a for-loop to use each Point object in Pts

2 Compute and store distances for each point
For each Point object, compute the distance

with the x and y properties. Then append/store in
the corresponding spot of a vector.

3 Sort points in order of increasing distance Use sort() on the distance vector, then use the
permutation indices to re-order objects in Pts.

Review Question #4

Thing we need to do Programming concept needed to do this thing

1 Find distances from (0,0) to all Point objects Set a for-loop to use each Point object in Pts

2 Compute and store distances for each point
For each Point object, compute the distance

with the x and y properties. Then append/store in
the corresponding spot of a vector.

3 Sort points in order of increasing distance Use sort() on the distance vector, then use the
permutation indices to re-order objects in Pts.

Review Question #4

Thing we need to do Programming concept needed to do this thing

1 Find distances from (0,0) to all Point objects Set a for-loop to use each Point object in Pts

2 Compute and store distances for each point
For each Point object, compute the distance

with the x and y properties. Then append/store in
the corresponding spot of a vector.

3 Sort points in order of increasing distance Use sort() on the distance vector, then use the
permutation indices to re-order objects in Pts.

Review Question #4

Thing we need to do Programming concept needed to do this thing

1 Find distances from (0,0) to all Point objects Set a for-loop to use each Point object in Pts

2 Compute and store distances for each point
For each Point object, compute the distance

with the x and y properties. Then append/store in
the corresponding spot of a vector.

3 Sort points in order of increasing distance Use sort() on the distance vector, then use the
permutation indices to re-order objects in Pts.

Review Question #4

Thing we need to do Programming concept needed to do this thing

1 Find distances from (0,0) to all Point objects Set a for-loop to use each Point object in Pts

2 Compute and store distances for each point
For each Point object, compute the distance

with the x and y properties. Then append/store in
the corresponding spot of a vector.

3 Sort points in order of increasing distance Use sort() on the distance vector, then use the
permutation indices to re-order objects in Pts.

function Pts = sortPoints(Pts)

for i = 1:length(Pts)

pt = Pts(i);

d(i) = sqrt(pt.x^2 + pt.y^2);

end

[~, idx] = sort(d);

Pts = Pts(idx);

Review Question #4: Solution
Connection to previous slide:
Red: for-loop to traverse Pts
Green: compute/store distances
Blue: sort and re-order Pts

function Pts = sortPoints(Pts)

for i = 1:length(Pts)

pt = Pts(i);

d(i) = sqrt(pt.x^2 + pt.y^2);

end

[~, idx] = sort(d);

Pts = Pts(idx);

Review Question #4: Solution
Connection to previous slide:
Red: for-loop to traverse Pts
Green: compute/store distances
Blue: sort and re-order Pts

function Pts = sortPoints(Pts)

for i = 1:length(Pts)

pt = Pts(i);

d(i) = sqrt(pt.x^2 + pt.y^2);

end

[~, idx] = sort(d);

Pts = Pts(idx);

Review Question #4: Solution
Connection to previous slide:
Red: for-loop to traverse Pts
Green: compute/store distances
Blue: sort and re-order Pts

Common Student Errors
● Getting the size of an array/Initializing arrays

size(A) = [nr, nc]; vs [nr, nc] = size(A);
● For loops based on array size

for k = 1:length(nr) vs for k = 1:nr
● 2D Cell Array vs. Arrays in Cells

A{1, 2} A{1}(2)

{1, 2, 3; {[1, 2, 3],
 4, 5, 6} [4, 6]}

has 6 cells has 2 cells

