
Question 1. (13 points)
(a) What will be printed when the following code is run? Pay attention to the alignment produced
by the format specifier and clearly show which letters/digits are on top of which (if any), assuming all
letters/digits/spaces have the same printed width.

m= 3;
n= 2;
rice= 1;
for k = 1:m*n

fprintf ('%3d', rice)
if rem(k,m) == 0

fprintf ('\n')
end
rice= rice *2;

end

1 2 4
8 16 32

(b) What will be printed when the following script is executed?

Script Function (in foo.m)
v = [4 5 10]; function a = foo(b,a)
k = [2 3 1];
a = v(k(2)); b = a - b;
fprintf(’a is %d\n’, a) a = bˆ2;
b= 6;
c= foo(a,b); fprintf(’b is %d\n’, b)
fprintf(’c is %d\n’, c) fprintf(’a is %d\n’, a)
fprintf(’a is %d\n’, a)

a is 10
b is -4
a is 16
c is 16
a is 10

1

Question 2. (17 points)
(a) Fill in the blank so that the code snippet keeps generating random points within the figure area until
a point lies in the shaded region (whose lower-left corner is at (2, 1)). The boundary of the shaded region
counts as “inside” the region.

0 1 2 3

0

0.5

1

1.5

2x= 3* rand ();
y= 2* rand ();

while (x < 2) || (y < 1)
% OR: while ˜(x >= 2 && y >= 1)

x= 3* rand ();
y= 2* rand ();

end

(b) Write a code snippet that assigns to variables x and y the coordinates of one point chosen randomly
from the set of points shown in this plot (observe that the coordinates of the points are all integers):

-1 0 1 2 3

2

3

4

% Complete these assignments

x= floor (5* rand ()) - 1;
% OR: x= ceil (5* rand ()) - 2;

y= floor (3* rand ()) + 2;
% OR: y= ceil (3* rand ()) + 1;

(c) Fill in the blanks in the range expression below so that the vector w will contain the same values as
vector v (ignoring rounding error). Assume that a < b and that n is an integer greater than 1. You may
define additional variables above the assignment to w if you wish.

v = linspace (a, b, n);

w = a : (b-a)/(n -1) : b ;

2

Question 3. (24 points)
An automotive consultant has determined that car buyers care most about cost, speed, and safety, which
can be computed as scores (unitless point values) in a simplified model from the engine horsepower h,
car frame weight w in kilograms, and passenger capacity c as follows:

speed = log(h)
cw2 cost =

√
hc safety = 10w

c

(here, log(x) refers to the natural logarithm, following Matlab’s convention).

(a) Implement the following function as specified:
function [speed , cost , safety] = calc_scores (c, w, h)
% Compute the speed , cost , and safefy scores from the passenger capacity
% `c`, car frame weight `w`, and engine horsepower `h` according to the
% consultant 's model.

speed = log(h)/(wˆ2*c);
cost = sqrt(h*c);
safety = 10*w/c;

(b) By making effective use of function calc scores(), implement the following function as specified:
function [max_speed , best_h , best_w] = optimize_car (target_c , target_s)
% Iteratively find the combination of horsepower (best_h) and weight (best_w)
% that achieves the highest speed score (max_speed) in the design of a
% 4- passenger car with the the following constraints :
% - possible values of engine horsepower are 50, 51, ..., 200
% - possible values of car frame weight are 1500 , 1600 , ..., 3000
% - cost score of the design cannot exceed the target cost score (target_c)
% by more than 20 points
% - safety score of the design cannot differ by more than 30 points from
% the target safety score (target_s)
% If multiple combinations of horsepower and weight result in the highest
% speed , any one of those combinations may be returned .
% If no combination of horsepower and weight can meet the constraints , then
% set all the return parameters to 0.

capacity = 4;
max_speed = 0;
best_h = 0;
best_w = 0;
for h = 50:200

for w = 1500:100:3000
[speed , cost , safety] = calc_scores (capacity , w, h);
if (speed > max_speed) && (cost <= target_c +20) && ...

(safety <= target_s +30) && (safety >= target_s -30)
% OR: abs(safety - target_s) <= 30

max_speed = speed;
best_h = h;
best_w = w;

end
end

end

3

Question 4. (22 points)
(a) Consider a game in which a hero is fighting a monster. In each round of the game, the hero takes
an action, and then, if the monster is still alive, the monster takes an action. The monster’s action is
always to attack the hero, dealing 20 points of damage, which is deducted from the hero’s pool of hit
points (initially 100). The hero may either attack or heal for their action: healing will add 50 hit points
back to their pool (which is allowed to exceed its initial value), while attacking will do 30 damage to the
monster (who starts with 200 hit points). The hero and monster are alive as long as their remaining hit
points are greater than zero.

Write a function named simCombat to simulate playing this game when the hero decides between their
two actions randomly. Your function must accept a single input parameter—the probability that the
hero chooses to attack (rather than heal)—and must return a vector containing the hero’s health after
each round. Specifically, assuming the result is stored in a variable hps, then hps(k) is the number of
hit points in the hero’s pool after k rounds have been played (hit points may be negative). Your function
should simulate rounds of combat until either the hero or the monster has died.

function heroHPLog = simCombat (pAttack)
heroAttack = 30;
monsterAttack = 20;
heroHeal = 50;
k= 1; % round counter
heroHP = 100;
monsterHP = 200;
while (heroHP > 0) && (monsterHP > 0)

if rand () < pAttack
monsterHP = monsterHP - heroAttack ;

else
heroHP = heroHP + heroHeal ;

end
if monsterHP > 0

heroHP = heroHP - monsterAttack ;
end
heroHPLog (k)= heroHP ;
k= k + 1;

end

(b) Complete the if condition so that the following snippet prints the appropriate message based on
whether or not the hero survives combat. You may define additional variables above the if-statement if
you wish.

% Play a game of hero -fights - monster in which hero attacks
% with 95% probability .
hps= simCombat (0.95);

% Print the outcome of the game

if hps(length (hps)) > 0

% Hero survived
disp('Our hero has vanquished the monster !')

else
% Hero did not survive
disp('Our hero has fallen to the monster .')

end

4

0 2 4 6 8 10

-6

-5

-4

-3

-2

-1

0

1

Question 5. (24 points)
Complete a script to draw an upside-down pyramid
composed of bricks. The script prompts the user for the
number of bricks in the top row and for the width of a
single brick. The upper-left corner of the top-left brick
should be at position (0, 0), and each brick should have a
height of 1. Each lower row should have one fewer brick
than the row above it, and its bricks should be centered
beneath the edges of the bricks above (see figure).

The bricks should be colored brighter the further they are
to the right. Specifically, their color should be linearly
interpolated between black and white according to the x-coordinate of their midpoint: a brick whose
midpoint is at x = 0 should be black, while one whose midpoint is at the right edge of the figure should
be white (note: no bricks in the pyramid actually have their midpoints at these extremes).

To draw the bricks, assume the existence of the following function (do not implement it yourself):
function DrawRect (x0 , y0 , width , height , color)
% Draw a rectangle and fill it with color.
% The lower -left corner of the rectangle will be at (`x0 `,`y0 `), its
% width and height will be `width ` and `height `, respectively , and it
% will be filled with the RGB color specified by the 3- vector `color `.

We’ve provided the graphics setup and input for you; write the rest of the script in the space below:
axis equal
hold on
black= [0 0 0]; white= [1 1 1];
n= input ('Enter number of bricks in top row: ');
w= input ('Enter width of a brick: ');
h= 1; % Brick height

x0= 0;
y0= -h;
for r = n: -1:1

x= x0;
for c = 1:r

xMid= x + w/2;
f= xMid /(w*n);
color= (1 - f)* black + f*white;
DrawRect (x, y0 , w, h, color);
x= x + w;

end
x0= x0 + w/2;
y0= y0 - h;

end

hold off

5

