
CS 1112 Prelim 1 Review

What we’ll do today
•Review of these topics:

•Conditional (if-elseif-else) statements
• Loops: for, while, nested
• Functions
•Vectors
• Vectorized code & linear interpolation

• Practice prelim questions which involve several topics at once

•Questions
Yay!

Poll: What do you want out of this?
•Review of these topics:

•Conditional (if-elseif-else) statements
• Loops: for, while, nested
• Functions
•Vectors
• Vectorized code & linear interpolation

• Practice prelim questions which involve several topics at once

•Questions

Conditional statements
General form

if (condition1)

% code to run if condition1 is true

elseif (condition2)

% code to run if condition2 is true but
% condition1 is false

else

% code to run if all previous conditions were false

end % important to include this!

Conditional statements
There can be no branches after
the if branch:

if (condition1)
 % some code
end

Conditional statements
There can be no branches after
the if branch:

if (condition1)
 % some code
end

There can be no elseif
branches after the if branch:

if (condition1)
 % some code
else
 % ‘catch all’ condition
end

Conditional statements
There can be many elseif
branches after the if branch:

if (condition1)
 % some code
elseif (condition2)
 % some code
elseif (condition3)
 % some code
else
 % ‘else’ not required
end

Conditional statements
There can be many elseif
branches after the if branch:

if (condition1)
 if (subcondition1)
 % code to run if condition1 and
 % subcondition1 are both true
 else
 % condition1 is true, subcondition1 is not
 end
elseif (condition2)
 if (subcondition2)
 % condition1 is not true, condition2
 % is true, subcondition2 is true
 elseif (subcondition3)
 % condition1 is not true, condition2 is true,
 % subcondition2 is not true but subcondition3
 % is true
 end
else
 % none of the previous conditions are true
end

Can nest if-elseif-else branches
inside any other conditional branch:

if (condition1)
 % some code
elseif (condition2)
 % some code
elseif (condition3)
 % some code
else
 % ‘else’ not required
end

Conditional statements
• Conditions must evaluate to true or false (equivalently, 1 or 0)
• Can join simple conditions together using && (and), || (or) , ~ (not)
• Check equality using == (not =, which is for assignment)
• Check inequality using ~=

Conditional statements
• Conditions must evaluate to true or false (equivalently, 1 or 0)
• Can join simple conditions together using && (and), || (or) , ~ (not)
• Check equality using == (not =, which is for assignment)
• Check inequality using ~=

Examples
Incorrect
if (a + b = 2)
 % do something if the sum of
 % a and b is 2
end

Correct
if (a + b == 2)
 % do something if the sum of
 % a and b is 2
end

Conditional statements
• Conditions must evaluate to true or false (equivalently, 1 or 0)
• Can join simple conditions together using && (and), || (or) , ~ (not)
• Check equality using == (not =, which is for assignment)
• Check inequality using ~=
Examples if (a + b == 2)

 if (c + d == 3)
 % some code to run if the sum
 % of a and b is 2, and also if
 % the sum of c and d is 3
 end
end

The above code is equivalent to this:

if (a + b == 2) && (c + d == 3)
 % some code
end

Incorrect
if (a + b = 2)
 % do something if the sum of
 % a and b is 2
end

Correct
if (a + b == 2)
 % do something if the sum of
 % a and b is 2
end

for and while loops

I need to loop until
some stopping condition(s)

indefinite iteration

while loop

I know exactly how many
times I need to loop

fixed iteration

for loop

for and while loops
for loop
Iterates a fixed number of times

Syntax:
for variableName = start:stepSize:end
 % Number of times this code will run:
 % floor((end-start)/stepSize) + 1
end

Example: Print the numbers 2, 4, 6, 8
for k = 2:2:8
 disp(k);
end

for and while loops
for loop
Iterates a fixed number of times

Syntax:
for variableName = start:stepSize:end
 % Number of times this code will run:
 % floor((end-start)/stepSize) + 1
end

Example: Print the numbers 2, 4, 6, 8
for k = 2:2:8
 disp(k);
end

while loop
Iterates until a condition becomes false

Syntax:
while (condition is true)
 % need to have code that will eventually
 % cause the condition to become false
end

Example: Print the numbers 2, 4, 6, 8
k = 2;
while (k <= 8)
 disp(k);
 k = k+2;
end

Equivalence of for and while loops

•A while loop can do everything that a for loop can do

•The reverse is not always true
(because you are not allowed to use break to end iteration in a for loop early)

•while loops are useful for not iterating more than is
necessary (i.e. they can be more efficient)
(efficiency has to do with code speed, not length)

Equivalence of for and while loops
Recall vectorQuery from lab 6: display 1 if the number r is within the first n
elements of vector v; display 0 if not.

Equivalence of for and while loops
Recall vectorQuery from lab 6: display 1 if the number r is within the first n
elements of vector v; display 0 if not.

Which of these is correct? If both are correct, which is better?

found = 0;
for k = 1:n
 if(v(k) == r)
 found = 1;
 end
end
disp(found)

k = 1; found = 0;
while (k <= n && k <= length(v) && ~found)
 if(v(k) == r)
 found = 1;
 end
 k = k+1;
end
disp(found)

Equivalence of for and while loops
Recall vectorQuery from lab 6: display 1 if the number r is within the first n
elements of vector v; display 0 if not.

Which of these is correct? If both are correct, which is better?

Answer: both solutions are correct – however, the code on the right is more efficient because it iterates the
minimum number of times necessary. (For example, think about when r is found before the nth index of v)

found = 0;
for k = 1:n
 if(v(k) == r)
 found = 1;
 end
end
disp(found)

k = 1; found = 0;
while (k <= n && k <= length(v) && ~found)
 if(v(k) == r)
 found = 1;
 end
 k = k+1;
end
disp(found)

Some common loop patterns
1. Find the maximum/minimum/“best” item in a set

Example: Given a vector v, display the smallest item in v

Some common loop patterns
1. Find the maximum/minimum/“best” item in a set

Example: Given a vector v, display the smallest item in v

minSoFar = v(1); % Initialize “best-so-far” variable
for k = 2:length(v)
 if (v(k) < minSoFar) % Compare “best-so-far” variable to current
 minSoFar = v(k); % element in the set and update it if needed
 end
end
disp(minSoFar)

Example: given a vector v, display the product of all elements in v

Some common loop patterns
2. Accumulation: use iteration to compute a statistic from a set of values
 (e.g. a sum, product, average, etc.)

Example: given a vector v, display the product of all elements in v

productSoFar = v(1); % Initial value of statistic

for k = 2:length(v)

 % Update statistic by “accumulating” it with the current value in the set

 productSoFar = productSoFar*v(k);

end

disp(productSoFar)

Some common loop patterns
2. Accumulation: use iteration to compute a statistic from a set of values
 (e.g. a sum, product, average, etc.)

Example: Draw a disk of radius 1 at every other point in a n ⨉ n grid
(e.g. if n is 5, draw disks at at (1,1), (1,3), (1,5), …, (3,1), (3,3), (3,5)...)

Some common loop patterns
3. Iterate through all combinations of two variables with a nested loop

Example: Draw a disk of radius 1 at every other point in a n ⨉ n grid
(e.g. if n is 5, draw disks at at (1,1), (1,3), (1,5), …, (3,1), (3,3), (3,5)...)

for x = 1:2:n % Iterate through all possible x-coordinates

 for y = 1:2:n % Iterate through all possible y-coordinates

 DrawDisk(x, y, 1, ‘b’)

 end

end

Some common loop patterns
3. Iterate through all combinations of two variables with a nested loop

Example: Generate random numbers (and display them) until we’ve generated 6

numbers or we get a random number greater than 0.9, whichever happens first.

Some common loop patterns
4. Do something repeatedly until one or more conditions is/are met

Example: Generate random numbers (and display them) until we’ve generated
6 numbers or we get a random number greater than 0.9, whichever happens
first.

numGenerated = 1;

r = rand;

disp(r)

while (r <= 0.9 && numGenerated <= 5) % 5 and not 6, because we already

 r = rand; % generated one random number before the loop

 disp(r)

 numGenerated = numGenerated + 1;

end

Some common loop patterns
4. Do something repeatedly until one or more conditions is/are met

Tip: It is often easier to think of a quitting condition instead of a continue condition
when writing while loops. Negate a quit condition to derive the continue condition.

Quit condition: “Quit when x==0 && y==0 && z==0”
Continue condition: “continue while ~(x==0 && y==0 && z==0)”

 same as
 x~=0 || y ~= 0 || z ~= 0

while (x~=0 || y ~= 0 || z ~= 0)

…

end

Some common loop patterns
4. Do something repeatedly until one or more conditions is/are met

Use of loops
Spring 2018 Prelim: Question 4

Use of loops
Spring 2018 Prelim: Question 4

Breaking down the problem:

● Think in structure first
● Then fill in the details
● What is important to the problem?
● Break into smaller problems

○ Assume you’ll be able to do a sub-task
○ Ask “What do I need to know for Task A?”
○ Then, “How do I write code for Task A?”

Use of loops
Spring 2018 Prelim: Question 4

Breaking down the problem:
1. We need a loop. (over what?)
2. Loop over the lines*

○ Deciding what to do for each
line will be manageable

3. Exactly n-1 lines: for loop

Use of loops
Spring 2018 Prelim: Question 4

Breaking down the problem:
1. We need a loop. (over what?)
2. Loop over the lines*

○ Deciding what to do for each
line will be manageable

3. Exactly n-1 lines: for loop

n = input(‘Enter an integer greater than 2:
‘);

for line=1:(n-1)
num_leading_spaces = n-line;
num_middle_spaces = n-2;

for i=1:num_leading_spaces
fprintf(‘ ‘)

end
fprintf(‘*’)
for i=1:num_middle_spaces

fprintf(‘ ‘)
end
fprintf(‘*’)

end

Use of loops
Spring 2018 Prelim: Question 4

Breaking down the problem:
1. We need a loop. (over what?)
2. Loop over the lines*

○ Deciding what to do for each
line will be manageable

3. Exactly n-1 lines: for loop
4. How do I print a given line?

○ What do I need to know?
○ How do I do it?

5. Special case for final line.

n = input(‘Enter an integer greater than 2:
‘);

for line=1:(n-1)
num_leading_spaces = n-line;
num_middle_spaces = n-2;

for i=1:num_leading_spaces
fprintf(‘ ‘)

end
fprintf(‘*’)
for i=1:num_middle_spaces

fprintf(‘ ‘)
end
fprintf(‘*’)

end

fo

Use of loops
Spring 2018 Prelim: Question 4

Breaking down the problem:
1. We need a loop. (over what?)
2. Loop over the lines*

○ Deciding what to do for each
line will be manageable

3. Exactly n-1 lines: for loop
4. How do I print a given line?

○ What do I need to know?
○ How do I do it?

5. Special case for final line.

n = input(‘Enter an integer greater than 2:
‘);

for line=1:(n-1)
num_leading_spaces = n-line;
num_middle_spaces = n-2;

for i=1:num_leading_spaces
fprintf(‘ ‘)

end
fprintf(‘*’)
for i=1:num_middle_spaces

fprintf(‘ ‘)
end
fprintf(‘*’)

end

for i=1:n

Use of loops
Spring 2018 Prelim: Question 4

Breaking down the problem:
1. We need a loop. (over what?)
2. Loop over the lines*

○ Deciding what to do for each
line will be manageable

3. Exactly n-1 lines: for loop
4. How do I print a given line?

○ What do I need to know?
○ How do I do it?

5. Special case for final line.

n = input(‘Enter an integer greater than 2: ‘);

for line=1:(n-1)
num_leading_spaces = n-line;
num_middle_spaces = n-2;

for i=1:num_leading_spaces
fprintf(‘ ‘)

end
fprintf(‘*’)
for i=1:num_middle_spaces

fprintf(‘ ‘)
end
fprintf(‘*\n’)

end

for i=1:n
fprintf(‘*’)

end

User-defined functions
Syntax for writing a function (with 1 input, 1 output)

function returnVariable = FunctionName(inputVar)

% code goes here

returnVariable = something

Syntax for writing a function (with multiple inputs, multiple outputs)

function [return1, return2] = FunctionName(input1,input2)
% code goes here
return1 = something
return2 = something

User-defined functions
Syntax for writing a function (with 1 input, 1 output)

function returnVariable = FunctionName(inputVar)

% code goes here

returnVariable = something

Syntax for writing a function (with multiple inputs, multiple outputs)

function [return1, return2] = FunctionName(input1,input2)

% code goes here

return1 = something

return2 = something

Note that:
• We need “end” at the end of each function.
• We can NOT directly access/call a

subfunction from another file.

Syntax for writing a subfunction
function [rV1,...] = FunctionName(IV1,...)

% code goes here
% use subfunction

end
function [srV1,...] = SubfunctionName(sIV1,...)

% code goes here
end

User-defined functions

User-defined functions: Calling functions
Example: 2017 spring Q 1(b)

foo.m file

function z = foo(x,y)
 z = y + 1;
 x = x + 6;

y = 2;
fprintf(‘x is %d\n’, x)
fprintf(‘z in %d\n’, z)

end

Note that:

• It is incorrect to initialize input
variables inside the function.

• It is safe to first initialize return
variables. If the loop doesn’t get
executed, the return variable
found never gets created and
assigned.

User-defined functions: Calling functions
Example: 2017 spring Q 1(b)

foo.m file

function z = foo(x,y)
 z = y + 1;
 x = x + 6;

y = 2;
fprintf(‘x is %d\n’, x)
fprintf(‘z in %d\n’, z)

end

script.m file

x = 4;
y = 12;
z = foo(x, x)

fprintf(‘z is %d\n’, z)
fprintf(‘x is %d\n’, x)
fprintf(‘y is %d\n’, y)

User-defined functions: Calling functions
Example: 2017 spring Q 1(b)

foo.m file

function z = foo(x,y)

 z = y + 1;

 x = x + 6;

y = 2;

fprintf(‘x is %d\n’, x)

fprintf(‘z in %d\n’, z)

end

script.m file

x = 4;

y = 12;

z = foo(x, x)

fprintf(‘z is %d\n’, z)

fprintf(‘x is %d\n’, x)

fprintf(‘y is %d\n’, y)

User-defined functions: Calling functions
Example: 2017 spring Q 1(b)

foo.m file

function z = foo(x,y)

 z = y + 1;

 x = x + 6;

y = 2;

fprintf(‘x is %d\n’, x)

fprintf(‘z in %d\n’, z)

end

script.m file

x = 4;

y = 12;

z = foo(x, x)

fprintf(‘z is %d\n’, z)

fprintf(‘x is %d\n’, x)

fprintf(‘y is %d\n’, y)

x is 10
z is 5
z is 5
x is 4
y is 12

Variable scope means
that changing a variable
in a function doesn’t
affect its value outside

User-defined functions: Things to remember
• Variables inside a function are local to that function. This means their values are

not accessible outside the function, except for the return variable

• Make sure that the function output variable is assigned a value by the time the
function ends

• Not all functions have outputs (e.g. DrawDisk)

• Not all functions have inputs

• Display/print and return are different. If a value is printed to the command window,
its value is still lost unless it is assigned to the output variable (returned).

• Synonymous terms: Input variable, argument, parameter to a function

• Synonymous terms: Return variable, output variable

User-defined functions: Things to remember
• Variables inside a function are local to that function. This means their values are

not accessible outside the function, except for the return variable

• Make sure that the function output variable is assigned a value by the time the
function ends

• Not all functions have outputs (e.g. DrawDisk)

• Not all functions have inputs

• Display/print and return are different. If a value is printed to the command window,
its value is still lost unless it is assigned to the output variable (returned).

• Synonymous terms: Input variable, argument, parameter to a function

• Synonymous terms: Return variable, output variable

User-defined functions: Things to remember
• Variables inside a function are local to that function. This means their values are

not accessible outside the function, except for the return variable

• Make sure that the function output variable is assigned a value by the time the
function ends

• Not all functions have outputs (e.g. DrawDisk)

• Not all functions have inputs

• Display/print and return are different. If a value is printed to the command window,
its value is still lost unless it is assigned to the output variable (returned).

• Synonymous terms: Input variable, argument, parameter to a function

• Synonymous terms: Return variable, output variable

User-defined functions: Things to remember
• Variables inside a function are local to that function. This means their values are

not accessible outside the function, except for the return variable

• Make sure that the function output variable is assigned a value by the time the
function ends

• Not all functions have outputs (e.g. DrawDisk)

• Not all functions have inputs

• Display/print and return are different. If a value is printed to the command window,
its value is still lost unless it is assigned to the output variable (returned).

• Synonymous terms: Input variable, argument, parameter to a function

• Synonymous terms: Return variable, output variable

Built-in Functions
• abs, sqrt, rem, floor, ceil, round, rand, zeros, ones, linspace, length, input, fprintf, disp, plot, bar
• n = input(‘please input: ’);
• y = linspace(x1,x2,n); generates n points. The spacing between the points is (x2-x1)/(n-1).
• rand: generate a random number in the range (0,1)

• Need to know how to:
- Generate a random number v in the range (a,b)

v = a + rand*(b-a); % rand*(b-a) gives random numbers in the range (0,b-a)

- Generate a random integer v in the range [a,b] without using randi
v = ceil(a-1 + rand*(b-a+1));
v = floor (a + rand*(b-a+1));

Vectors

One way of creating a vector:
a = [1, 2, 3]; % Dimension 1x3
b = [1; 2; 3]; % Dimension 3x1
c = 1:3; % Same as c = [1, 2, 3];
d = linspace(1, 3, 3); % Same as d =[1,2,3];

Vectors

Another way: create an empty
vector, then fill it. (useful if you don’t
know in advance how big the vector
should be)
c = [];
c(1) = 1; c(2) = 2; c(3) = 3;

One way of creating a vector:
a = [1, 2, 3]; % Dimension 1x3
b = [1; 2; 3]; % Dimension 3x1
c = 1:3; % Same as c = [1, 2, 3];
d = linspace(1, 3, 3); % Same as d =[1,2,3];

Vectors

Another way: create an empty
vector, then fill it. (useful if you don’t
know in advance how big the vector
should be)
c = [];
c(1) = 1; c(2) = 2; c(3) = 3;

Useful vector functions:
d = zeros(1,3); % [0,0,0]
e = ones(1,3); % [1,1,1]
f = length(d); % f is 3

One way of creating a vector:
a = [1, 2, 3]; % Dimension 1x3
b = [1; 2; 3]; % Dimension 3x1
c = 1:3; % Same as c = [1, 2, 3];
d = linspace(1, 3, 3); % Same as d =[1,2,3];

Vectors

One way of creating a vector:
a = [1, 2, 3]; % Dimension 1x3
b = [1; 2; 3]; % Dimension 3x1
c = 1:3; % Same as c = [1, 2, 3];
d = linspace(1, 3, 3); % Same as d =[1,2,3];

Another way: create an empty
vector, then fill it. (useful if you don’t
know in advance how big the vector
should be)
c = [];
c(1) = 1; c(2) = 2; c(3) = 3;

Useful vector functions:
d = zeros(1,3); % [0,0,0]
e = ones(1,3); % [1,1,1]
f = length(d); % f is 3

Accessing an index of a vector with a loop
% Add 1 to each element of c and display it
for k = 1:length(c)
 c(k) = c(k) + 1; % not c = c+1
 disp(c(k))
end

Using Vectors: Building vectors
Example: 2018 spring Q2(a)
Complete the following function:
function [ints, other] = getInts(v)
% Separate the integer values from non-integer values in vector v.
% v: a non-empty vector of type double
% ints: a vector storing only the integer values in v; ints may be empty.
% other: a vector storing only the non-integer values in v; other may be empty.
% Example: If v is [3 2.1 3 7] then ints is [3 3 7] and other is [2.1]
%
% Hint: A type double scalar x has an integer value if x divided by 1 results
% in a zero as the remainder.
%
% DO NOT use vectorized code.

Using Vectors: Building vectors
Example: 2018 spring Q2(a)
Complete the following function:
function [ints, other] = getInts(v)
% Separate the integer values from non-integer values in vector v.

ints = []; other = []; % start with lengths 0, build as we go
intsIdx = 1; otherIdx = 1;
for idx=1:length(v)

if rem(v(idx), 1) == 0 % then it’s an integer
ints(intsIdx) = v(idx); % builds the array
intsIdx = intsIdx + 1;

else
other(otherIdx) = v(idx);
otherIdx = otherIdx + 1;

end
end

Vectorized code

● operations on a whole vector that work element-wise

v = [1 2 3 4]

disp(-v) % [-1 -2 -3 -4]

disp(v+v) % [2 4 6 8]

disp(v.*v) % [1 4 9 16]

disp(v.^2) % [1 4 9 16]

disp(sin(v)) % [0.8415 0.9093 0.1411 -0.7568]

Linear interpolation

• You know f(x1) and f(x2)

• What are the values in between?

val1 = f(x1)

val2 = f(x2)

values = linspace(val1, val2, 300) % linear interpolation

% spacing here is (val2-val1)/299

t = 0.3

value = t * val1 + (1-t) * val2 % also linear interpolation

Linear interpolation: Example

• Interpolate the colors between red [1 0 0] and blue [0 0 1]
figure; hold on;
n = 300;
for k=1:n

f = ??
col = (1-f)*[1 0 0] + f*[0 0 1];
plot([k, k], [0, 1], ‘color’, col)

end

Linear interpolation: Example

• Interpolate the colors between red [1 0 0] and blue [0 0 1]
figure; hold on;
n = 300;
for k=1:n

f = (k-1)/(n-1);
col = (1-f)*[1 0 0] + f*[0 0 1];
plot([k, k], [0, 1], ‘color’, col)

end

Linear interpolation: Example

• Interpolate the colors between red [1 0 0] and blue [0 0 1]
figure; hold on;
n = 300;
for k=1:n

f = (k-1)/(n-1);
col = (1-f)*[1 0 0] + f*[0 0 1];
plot([k, k], [0, 1], ‘color’, col)

end

Questions?

Options:

● Questions
● More practice prelim problems

Using Vectors
Example: 2018 spring Q3
Complete the following function:

function n = howMany(v, s)
% Find the largest n such that the first n components in vector v have a sum
% strictly less than s. v is a non-empty vector with positive values; s is a
% scalar. Note that n may be zero.
% Example: if v is [5 1 4 6] and s is 10 , then n should be 2.
% DO NOT USE ANY BUILT-IN FUNCTIONS OTHER THAN length.

Using Vectors
Example: 2018 spring Q3
Complete the following function:

function n = howMany(v, s)

% Find the largest n such that the first n components in vector v have a sum

% strictly less than s. v is a non-empty vector with positive values; s is a

% scalar. Note that n may be zero.

% Example: if v is [5 1 4 6] and s is 10 , then n should be 2.

% DO NOT USE ANY BUILT-IN FUNCTIONS OTHER THAN length.

If you’re not sure how to start, do an example by hand:
s = 10
[5 1 4 6]

total = 0

Using Vectors
Example: 2018 spring Q3
Complete the following function:

function n = howMany(v, s)

% Find the largest n such that the first n components in vector v have a sum

% strictly less than s. v is a non-empty vector with positive values; s is a

% scalar. Note that n may be zero.

% Example: if v is [5 1 4 6] and s is 10 , then n should be 2.

% DO NOT USE ANY BUILT-IN FUNCTIONS OTHER THAN length.

If you’re not sure how to start, do an example by hand:
s = 10
[5 1 4 6]

idx = 1
total = 5

Using Vectors
Example: 2018 spring Q3
Complete the following function:

function n = howMany(v, s)

% Find the largest n such that the first n components in vector v have a sum

% strictly less than s. v is a non-empty vector with positive values; s is a

% scalar. Note that n may be zero.

% Example: if v is [5 1 4 6] and s is 10 , then n should be 2.

% DO NOT USE ANY BUILT-IN FUNCTIONS OTHER THAN length.

If you’re not sure how to start, do an example by hand:
s = 10
[5 1 4 6]

idx = 2
total = 6

Using Vectors
Example: 2018 spring Q3
Complete the following function:

function n = howMany(v, s)

% Find the largest n such that the first n components in vector v have a sum

% strictly less than s. v is a non-empty vector with positive values; s is a

% scalar. Note that n may be zero.

% Example: if v is [5 1 4 6] and s is 10 , then n should be 2.

% DO NOT USE ANY BUILT-IN FUNCTIONS OTHER THAN length.

If you’re not sure how to start, do an example by hand:
s = 10
[5 1 4 6]

idx = 3
total = 11>10 STOP!

Using Vectors
Example: 2018 spring Q3
Complete the following function:

function n = howMany(v, s)

% Find the largest n such that the first n components in vector v have a sum

% strictly less than s. v is a non-empty vector with positive values; s is a

% scalar. Note that n may be zero.

% Example: if v is [5 1 4 6] and s is 10 , then n should be 2.

% DO NOT USE ANY BUILT-IN FUNCTIONS OTHER THAN length.

s = 10
[5 1 4 6]

idx = 3
total = 11>10 STOP!

Indefinite iteration while loop

total accumulator

idx index

stop when total > s while condition

Using Vectors
Example: 2018 spring Q3
Complete the following function:

function n = howMany(v, s)
% Find the largest n such that the first n components in vector v have a sum
% strictly less than s. v is a non-empty vector with positive values; s is a
% scalar. Note that n may be zero.
% Example: if v is [5 1 4 6] and s is 10 , then n should be 2.
% DO NOT USE ANY BUILT-IN FUNCTIONS OTHER THAN length.

idx=1;
total=0;
while total < s && idx <= length(v)

total = total + v(idx);
idx = idx + 1;

end
n = idx - 1;

Indefinite iteration while loop

total accumulator

idx index

stop when total > s while condition

