CS1112 Spring 2019 Prelim 1 Mar 12 7:30-9:00pm

Name: NetID:
(Legibly print last name, first name, middle name)

Statement of integrity: I did not, and will not, violate the rules of academic integrity on this exam.

(Signature)

Circle your lecture time: 9:05 or 11:15

Circle your discussion instructor’s name:

H Tuesday Wednesday
10:10 Helen Sun
11:15 Kun Dong
12:20 Susie Song Helen Sun
1:25 Susie Song Kun Dong
2:30 Matthew Davidow Noam Eshed
3:35 Matthew Davidow Noam Eshed

Instructions:

This is a 90-minute, closed-book exam; no calculators are allowed.

The exam is worth a total of 100 points, so it’s about one point per minute!

Read each problem completely, including any provided code, before starting it.
Raise your hand if you have any questions.

Use the back of the pages or ask for additional sheets of paper as necessary.

Clarity, conciseness, and good programming style count for credit.

If you supply multiple answers, we will grade only one.

Use only MATLAB code. No credit for code written in other programming languages.
Assume there will be no input errors.

Do not modify given code unless instructed to do so.

Do not write user-defined functions or subfunctions unless instructed to do so.

Do not use switch, try, catch, break, continue, or return statements.

Do not use built-in functions that have not been discussed in the course.

You may find the following MATLAB predefined functions useful:

abs, sqrt, rem, floor, ceil, round, rand, zeros, ones, linspace, length, input, fprintf, disp, bar

Examples:

rem(5,2) — 1, the remainder of 5 divided by 2

rand — a random real value in the open interval (0,1)
floor(6.9), floor(6) — 6, rounds down to the nearest integer
ceil(8.1), ceil(9) — 9, rounds up to the nearest integer
zeros(1,4) — 1 row 4 columns of zeros

length([2 4 8]) — 3, length of a vector

Question 1: (15 points)

(a) In each of the following cases, is it better to use a for-loop or a while-loop? Circle only one choice
(for or while) for each case. By “better,” first consider run-time efficiency and then compactness of the
code. Recall that the break keyword is not allowed.

/ while Case 1 Calculate the first 100 Fibonacci numbers.

for / Case 2 Prompt the user to input a value until a negative value is entered.
/ while Case 3 Find the smallest value in a vector.

for / Case 4 Find the first instance of the value 5 in a vector of integers.

(b) Write one expression on the blank so that b is a uniformly random real value generated in the interval
(-14.1,5). The only built-in function allowed is rand.

Solution: rand*19.1 - 14.1

(c) Write one expression on the blank so that scalar c is randomly chosen from the set [0, 2, 4, ..., 100]
with equal likelihood. (Note that c is even.) The only built-in functions allowed are rand, floor, and
ceil.

Solutions: 2 x floor(rand*51)
2 * (ceil(rand*51) - 1)

(d) What will be printed when the following script is executed? Use the specified print format.

Script Function
x = 3; function [a,b] = gobble(y,x)
y = 5;
[x,z] = gobble(x,y); a=y - x;

fprintf(’x is %d\n’, x) | b = x + 10;
fprintf(’y is %d\n’, y) | z = 20;
fprintf(’z is %d\n’, z) | fprintf(’a is %d\n’, a)

Solution:

a is -2
x is -2
y is 5
z is 15

Question 2: (10 points)

A leap year is a year that is divisible by 4 with one exception: years divisible by 100 are not leap years
unless they are also divisible by 400. For example, the year 2016 was a leap year, the year 1600 was a leap
year, but the year 1700 was not a leap year.

Complete the script below to determine whether the given variable y corresponds to a leap year. The script
should display the word “leap” if y is a leap year; otherwise “not leap” should be displayed.

y= input (’Enter a year: ’); ¥ Assume y is an integer > 0
% Determine whether y is a leap year

Example solution:
if rem(y, 4) ==
if rem(y, 100)==0 && rem(y, 400)~=0

disp(’not leap’)
else

disp(’leap’)
end

else
disp(’not leap’)
end

Question 3: (20 points)

Implement the following function as specified:

function idx = whereGreater(v, w)
% Find the indices of the values in vector w that are greater than all the values in v.
% v, w: each is a non-empty vector of type double values.

% idx: a vector of the indices of w where w is strictly greater than all the values

/A in v; idx may be empty.

% Example: If v is [2 3 0] and w is [6 3 -6 9 2], then idx is [1 4] because w(1l) and w(4)
b are greater than all the values in v.

% The only built-in function allowed is length.
%» Be run-time efficient for full credit.

Example solution:

% Find vmax
vmax= v(1); % or -inf

for j= 2:length(v)
if v(j) > vmax
vmax= v(j);

end

end

% Find indices of w where w>vmax
idx= [1;

count= 0;
for k= 1:length(w)

if w(k) > vmax
count= count + 1;

idx(count)= k;
% Alternatively, concatenate k to idx without variable count:
% idx= [idx k]
end
end

Question 4: (30 points)

(a) Implement the following function as specified:

function [pFinal, hFinal] = doubleGame(pStart, hStart)

% Simulate the "double game," a betting game between a player and a host.

% pStart: a positive number of chips with which the player starts the game.

% hStart: a positive number of chips with which the host starts the game.

% A game consists of 1 or more rounds. The betting starts at 1 chip. In each round of
% the game Player flips a coin: heads means Player wins the bet from Host and the

% game ends (no more rounds); tails means Player loses the bet to Host but can start
% another round that doubles the bet if Player and Host each has enough chips for the
% bet. The game ends when Player wins a bet or when Player or Host does not have

% enough chips for the bet.

% pFinal, hFinal: the number of chips that Player and Host have, respectively, at the

% end of the game.

Example solution:

pWins= false;
pChips= pStart;
hChips= hStart;
bet= 1;
while “pWins && pChips>=bet
% Note: Host always has enough chips because Host wins Player’s bet,
% resulting in Host having an amount that is double the bet, which is
% exactly the amount of the next bet. So it’s not necessary to include
yA hChips>=bet
% in loop guard. OK if student includes it.

if rand < .5 % <=, >, >= are ok
% Player loses
pChips= pChips - bet;
hChips= hChips + bet;
bet= bet*2;
else
% Player wins
pChips= pChips + bet;
hChips= hChips - bet;
pWins= true;
end
end
pFinal= pChips;
hFinal= hChips;

Question 4, continued.

(b) Assume that function doubleGame from Part (a) has been correctly implemented; make effective use
of it in order to implement the following function as specified:

function [count, playerAve] = manyDoubleGames(n,pStart,hStart)

% Simulate the "double game" n times, each time with Player starting with pStart chips
% and Host starting with hStart chips. n, pStart, and hStart are each a positive

% integer.

% count is a vector of appropriate length such that count(k) is the number of times

% that Player ends the game with k-1 chips. I.e., count(l) is the number of times

% that Player ends the game with O chip, count(2) is the number of times that Player
% ends the game with 1 chip, ..., etc.

% playerAve is the average number of chips with which Player ends the game.

% The only built-in function allowed is zeros.

% Be run-time efficient for full credit.

Example solution:
count= zeros(l, pStart+hStart+1);
% Generally one expects the max that one can get is everything at the
% start, but with this game actually Player will never end with more than
% pStart+l chips, so
yA zeros(1, pStart+2)
% is also correct.
accum= O;
for k= 1:n
[pFinal, hFinal] = doubleGame(pStart, hStart);

count (pFinal+1)= count(pFinal+1l) + 1;

accum= accum + pFinal;
end

playerAve= accum/n;

Question 5: (25 points)

Complete the function below as specified. Do not use
any built-in functions other than rem, length and
zeros. The diagram on the right shows an example
graphic produced by the following statements:
green=[0 .9 .3]; brown=[.7 .5 0];
treePlot(0, 0, 8, 1, green, brown)
Assume the availability of the function DrawDisk. For
example, the command

DrawDisk(3, 2,

.5, [1 0 0D)

-10

-15

- [0.0
[0.1
[0.2
[0.3
[0.4
8 [0.5
[0.6
[0.7

0.90
0.84
0.79
0.73
0.67
0.61
0.56
0.50

0.30]
0.26]
0.21]
0.17]
0.13]
0.09]
0.04]
0.00]

-15 -10 -5 0 5 10 15

draws a red disk of radius 0.5 centered at (3,2). Your code draws only the disks. The grid lines
rgb values are shown for your convenience; do not draw them.

function treePlot(xc, yc, n, r, green, brown)

h
h
h
h

Draw a

The first row has one leaf and is centered at xc, yc.

Htree n

where the kth row has k leaves.

Each leaf is a disk of radius r.
Each subsequent row has

20

and the

one more leave and the rows of leaves grow alternately to the left and to the right.
The top leaf has the color green; the bottom row of leaves has the color brown;

% the rows in between vary uniformly in color (linearly interpolated).

close all; figure; axis equal; hold on

Example solution:

for k 1:n
XC;

frac= (k-1)/(n-1);
colr= frac*brown + (l1-frac)*green;
for j = 1:k

DrawDisk(x, yc, r, colr);

if rem(k,2) ==
X = X - 2%r;
else
X = X + 2%r;
end
end

yCc = yc - 2%r;
end

hold off

Hint: DECOMPOSE! First work on drawing the disks at the correct locations all in one color; then revise

your code to deal with the color interpolation.

