
CS1112 Spring 2019 Prelim 1 Mar 12 7:30–9:00pm

Name: NetID:
(Legibly print last name, first name, middle name)

Statement of integrity: I did not, and will not, violate the rules of academic integrity on this exam.

(Signature)

Circle your lecture time: 9:05 or 11:15

Circle your discussion instructor’s name:

Tuesday Wednesday

10:10 Helen Sun

11:15 Kun Dong

12:20 Susie Song Helen Sun

1:25 Susie Song Kun Dong

2:30 Matthew Davidow Noam Eshed

3:35 Matthew Davidow Noam Eshed

Instructions:

• This is a 90-minute, closed-book exam; no calculators are allowed.
• The exam is worth a total of 100 points, so it’s about one point per minute!
• Read each problem completely, including any provided code, before starting it.
• Raise your hand if you have any questions.
• Use the back of the pages or ask for additional sheets of paper as necessary.
• Clarity, conciseness, and good programming style count for credit.
• If you supply multiple answers, we will grade only one.
• Use only Matlab code. No credit for code written in other programming languages.
• Assume there will be no input errors.
• Do not modify given code unless instructed to do so.
• Do not write user-defined functions or subfunctions unless instructed to do so.
• Do not use switch, try, catch, break, continue, or return statements.
• Do not use built-in functions that have not been discussed in the course.
• You may find the following Matlab predefined functions useful:
abs, sqrt, rem, floor, ceil, round, rand, zeros, ones, linspace, length, input, fprintf, disp, bar

Examples:
rem(5,2) → 1, the remainder of 5 divided by 2
rand → a random real value in the open interval (0,1)
floor(6.9), floor(6) → 6, rounds down to the nearest integer
ceil(8.1), ceil(9) → 9, rounds up to the nearest integer
zeros(1,4) → 1 row 4 columns of zeros
length([2 4 8]) → 3, length of a vector

1

Question 1: (15 points)

(a) In each of the following cases, is it better to use a for-loop or a while-loop? Circle only one choice
(for or while) for each case. By “better,” first consider run-time efficiency and then compactness of the
code. Recall that the break keyword is not allowed.

for / while Case 1 Calculate the first 100 Fibonacci numbers.

for / while Case 2 Prompt the user to input a value until a negative value is entered.

for / while Case 3 Find the smallest value in a vector.

for / while Case 4 Find the first instance of the value 5 in a vector of integers.

(b) Write one expression on the blank so that b is a uniformly random real value generated in the interval
(-14.1,5). The only built-in function allowed is rand.

Solution: rand*19.1 - 14.1

(c) Write one expression on the blank so that scalar c is randomly chosen from the set [0, 2, 4, . . . , 100]
with equal likelihood. (Note that c is even.) The only built-in functions allowed are rand, floor, and
ceil.

Solutions: 2 * floor(rand*51)

2 * (ceil(rand*51) - 1)

(d) What will be printed when the following script is executed? Use the specified print format.

Script Function

x = 3; function [a,b] = gobble(y,x)

y = 5;

[x,z] = gobble(x,y); a = y - x;

fprintf(’x is %d\n’, x) b = x + 10;

fprintf(’y is %d\n’, y) z = 20;

fprintf(’z is %d\n’, z) fprintf(’a is %d\n’, a)

Solution:

a is -2

x is -2

y is 5

z is 15

2

Question 2: (10 points)

A leap year is a year that is divisible by 4 with one exception: years divisible by 100 are not leap years
unless they are also divisible by 400. For example, the year 2016 was a leap year, the year 1600 was a leap
year, but the year 1700 was not a leap year.

Complete the script below to determine whether the given variable y corresponds to a leap year. The script
should display the word “leap” if y is a leap year; otherwise “not leap” should be displayed.

y= input(’Enter a year: ’); % Assume y is an integer > 0

% Determine whether y is a leap year

Example solution:

if rem(y, 4) == 0

if rem(y, 100)==0 && rem(y, 400)~=0

disp(’not leap’)

else

disp(’leap’)

end

else

disp(’not leap’)

end

3

Question 3: (20 points)

Implement the following function as specified:

function idx = whereGreater(v, w)

% Find the indices of the values in vector w that are greater than all the values in v.

% v, w: each is a non-empty vector of type double values.

% idx: a vector of the indices of w where w is strictly greater than all the values

% in v; idx may be empty.

% Example: If v is [2 3 0] and w is [5 3 -6 9 2], then idx is [1 4] because w(1) and w(4)

% are greater than all the values in v.

% The only built-in function allowed is length.

% Be run-time efficient for full credit.

Example solution:

% Find vmax

vmax= v(1); % or -inf

for j= 2:length(v)

if v(j) > vmax

vmax= v(j);

end

end

% Find indices of w where w>vmax

idx= [];

count= 0;

for k= 1:length(w)

if w(k) > vmax

count= count + 1;

idx(count)= k;

% Alternatively, concatenate k to idx without variable count:

% idx= [idx k]

end

end

4

Question 4: (30 points)

(a) Implement the following function as specified:

function [pFinal, hFinal] = doubleGame(pStart, hStart)

% Simulate the "double game," a betting game between a player and a host.

% pStart: a positive number of chips with which the player starts the game.

% hStart: a positive number of chips with which the host starts the game.

% A game consists of 1 or more rounds. The betting starts at 1 chip. In each round of

% the game Player flips a coin: heads means Player wins the bet from Host and the

% game ends (no more rounds); tails means Player loses the bet to Host but can start

% another round that doubles the bet if Player and Host each has enough chips for the

% bet. The game ends when Player wins a bet or when Player or Host does not have

% enough chips for the bet.

% pFinal, hFinal: the number of chips that Player and Host have, respectively, at the

% end of the game.

Example solution:

pWins= false;

pChips= pStart;

hChips= hStart;

bet= 1;

while ~pWins && pChips>=bet

% Note: Host always has enough chips because Host wins Player’s bet,

% resulting in Host having an amount that is double the bet, which is

% exactly the amount of the next bet. So it’s not necessary to include

% hChips>=bet

% in loop guard. OK if student includes it.

if rand < .5 % <=, >, >= are ok

% Player loses

pChips= pChips - bet;

hChips= hChips + bet;

bet= bet*2;

else

% Player wins

pChips= pChips + bet;

hChips= hChips - bet;

pWins= true;

end

end

pFinal= pChips;

hFinal= hChips;

5

Question 4, continued.

(b) Assume that function doubleGame from Part (a) has been correctly implemented; make effective use
of it in order to implement the following function as specified:

function [count, playerAve] = manyDoubleGames(n,pStart,hStart)

% Simulate the "double game" n times, each time with Player starting with pStart chips

% and Host starting with hStart chips. n, pStart, and hStart are each a positive

% integer.

% count is a vector of appropriate length such that count(k) is the number of times

% that Player ends the game with k-1 chips. I.e., count(1) is the number of times

% that Player ends the game with 0 chip, count(2) is the number of times that Player

% ends the game with 1 chip, ..., etc.

% playerAve is the average number of chips with which Player ends the game.

% The only built-in function allowed is zeros.

% Be run-time efficient for full credit.

Example solution:

count= zeros(1, pStart+hStart+1);

% Generally one expects the max that one can get is everything at the

% start, but with this game actually Player will never end with more than

% pStart+1 chips, so

% zeros(1, pStart+2)

% is also correct.

accum= 0;

for k= 1:n

[pFinal, hFinal] = doubleGame(pStart, hStart);

count(pFinal+1)= count(pFinal+1) + 1;

accum= accum + pFinal;

end

playerAve= accum/n;

6

Question 5: (25 points)

Complete the function below as specified. Do not use
any built-in functions other than rem, length and
zeros. The diagram on the right shows an example
graphic produced by the following statements:

green=[0 .9 .3]; brown=[.7 .5 0];

treePlot(0, 0, 8, 1, green, brown)

Assume the availability of the function DrawDisk. For
example, the command

DrawDisk(3, 2, .5, [1 0 0]) -15 -10 -5 0 5 10 15 20

-15

-10

-5

0 [0.0 0.90 0.30]

[0.1 0.84 0.26]

[0.2 0.79 0.21]

[0.3 0.73 0.17]

[0.4 0.67 0.13]

[0.5 0.61 0.09]

[0.6 0.56 0.04]

[0.7 0.50 0.00]

draws a red disk of radius 0.5 centered at (3,2). Your code draws only the disks. The grid lines and the
rgb values are shown for your convenience; do not draw them.

function treePlot(xc, yc, n, r, green, brown)

% Draw a "tree" where the kth row has k leaves. Each leaf is a disk of radius r.

% The first row has one leaf and is centered at xc, yc. Each subsequent row has

% one more leave and the rows of leaves grow alternately to the left and to the right.

% The top leaf has the color green; the bottom row of leaves has the color brown;

% the rows in between vary uniformly in color (linearly interpolated).

close all; figure; axis equal; hold on

Example solution:

for k = 1:n

x = xc;

frac= (k-1)/(n-1);

colr= frac*brown + (1-frac)*green;

for j = 1:k

DrawDisk(x, yc, r, colr);

if rem(k,2) == 0

x = x - 2*r;

else

x = x + 2*r;

end

end

yc = yc - 2*r;

end

hold off

Hint: DECOMPOSE! First work on drawing the disks at the correct locations all in one color; then revise
your code to deal with the color interpolation.

7

