Module 28

Generators

Recall: The Range Iterable

range(x)

Example

e Creates an iterable
* Can be used in a for-loop
= Makes ints (0, 1, ... x-1)
e But it 1s not a tuple!
= A black-box for numbers
= Entirely used in for-loop
= Contents of folder hidden

>>> range(3)
range(0,3)

>>> for x in range(3)
print(x)

Recall: The Range Iterable

range(x) Example
e (Creates an iterable >>> range(d)
= Can be vz B N B

Sl Iterable: Anything that EFEX

e Butitisn
= A black

= Entirely used in for-loop 1

can be used 1n a for-loop

= Contents of folder hidden 2

Iterators: Iterables Outside of For-Loops

 [terators can manually extract elements

= Get each element with the next() function
= Keep going until you reach the end
= Ends with a Stoplteration (Why?)

e (Can create 1terators with iter() function
>>> g = iter([1,5,3])

>>> next(a)
1 Must be a }
o> next(a) iterable

5

Iterators Can Be Used in For-Loops

>>> g = iter([1,2])

>>> for X in a: Technically, iterators
print(x) are also iterable

1

Q

>>> for X in a: But they are
. DPrint(x) one-use only!

>>>

Iterators are Classes

class rangeliter(object):

""Tterator class for squares of a range"""
Attribute _limit: end of range

Attribute _pos: current spot of iterator

def _ next__ (self):

"""Returns the next element"""
if self._pos >= self._limit:
raise Stoplteration()

else:
value = self._pos*self._pos
self._pos +=1

return value

Iterators are Classes

class rangeliter(object):

""Tterator class for squares of a range"""

Attribute limit: end of range

Attribute pos: current s| Defines the

next() fcn

def _ next__ (self):
"""Returns the next element"""
if self._pos >= self._limit:
raise Stoplteration()

else:
value = self._pos*self._pos
self._pos +=1

return value

Iterators are Classes

class rangeliter(object):

"""Iterator class for squares of a rangeg How far to go }
Attribute _limit: end of range

Attribute _pos: current spot of iterator ﬁ

How far we are }

def _ next__ (self):

"""Returns the next element"""
if self._pos >= self._limit:
raise Stoplteration()

else:

value = self._pos*self._pos
self._pos +=1

return value

Raise error when
gone too far

Iterators are Classes

class rangediter(object):

""Tterator class for squares of a range"""
Attribute _limit: end of range

Attribute _pos: current spot of iterator

def __next (self):

""Returns the next element"" Update “loop” after

if self._pos >= self._limit: doing Computati()n
raise StopIteration()

else:

value = self._pos*self._pos

sell._pos += 1 Essentially a
return value :
loop variable

Iterables are Also Classes

class ranged(object):
"""Tterable class for squares of a range™"

def _init (self,n):
"""Initializes a squares iterable"™"
self, limit =n

4{ Defines the }
def __iter__(self): iter() function

""Returns a new iterator""
return rangeliter(self._limit)

Iterables are Also Classes

class ranged(object):
"""Tterable class for squares of a range™"

def __init_ (self,n): Iterables are objects
""Initializes a squares iter that generate

self._limit =n iterators on demand

def _ iter (self):
""Returns a new iterator""
return rangeliter(self._limit)

Iterators are Hard to Write!

* Has the same problem as GUI applications
" We have a hidden loop
= All loop variables are now attributes
* Similar to inter-frame/intra-frame reasoning
* Would be easier if loop were not hidden
= Idea: Write this as a function definition

= Function makes loop/loop variables visible

e But iterators “return” multiple values

= So how would this work?

The Wrong Way

def rangeliter(n):

Iterator for the squares of numbers O to n-1

Precondition: nis an int >=0

for x in range(n):

return x*x Stops at the
first value

The yield Statement

 Format: yield <expression>
= Used to produce a value
= But 1t does not stop the “function”
= Useful for making iterators
 But: These are not normal functions

" Presence of a yield makes a generator

= Function that returns an iterator

The yield Statement

 Format: yield <expression>
= Used to produce a value
= But 1t does not stop the “function”
= Useful for making iterators

e But: These are not normal functions

| More on this distinction 1n a bit

The Generator approach

def rangeliter(n):

Generator for the squares
of numbers O to n-1

Precon: nisanint>=0

for x in range(n):

yield x*x

>>> g = rangeliter(3)
>>> g,

<generator object>
>>> next(a)

0

>>> next(a)

1

>>> next(a)

4

The Generator approach

def rangeliter(n): >>> g = rangeliter(d)
Inin >>> a'

Generator for the squares <generator

Essentially
a constructor

of numbers O to n-1 >>> next(a)
0

Precon: nis anint >=0 >>> next(a)

mnmn 1

for x in range(n): >>> next(a)

yield x*x 4

What Happens on a Function Call?

Visualize | | Execute Code | | Edit Code Heap primitives Use a

Creates
def range2iter(n): “q a generator

"""Generator for a range of squares""" global R
for x in ran n): : ge2iter(n)
° ; 2NgE () range2iter |id1
yield x*x - d
a |i id2: t
print('Ended loop for '+str(x)) id2:generator
range2iter(3)
Frames

a = rangeliter(3)

—p X = next(a)
y = next(a)
z = next(a)
¥ = nexk(a) No call

frame

<< First <Back Step 3 of 20 Forward > Last >>

line that has just executed
=) next line to execute

next() Initiates a Function Call

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows
. Globals Objects
def range2iter(n):)
"""Generator for a range of squares""" global id1:function
— for x in range(n):

range2iter |id1

. | Comes from
me Or1gInal call

yield x*x
print('Ended loop for '+str(x))

a = rangeliter(3)

range2iter

X = next(a)
y = next(a) s
z = next(a)
w = next(a)

8 Frame for
<< First <Back Step 4 of 20 Forward > Last >>
next()

line that has just executed
=) next line to execute

Call Finishes at the yield

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows
. Globals Objects
def range2iter(n):)

"""Generator for a range of squares""" global id1:function

for x in range(n): _ range2iter(n)
el *g i) range2iter |idl
ie X*X

= y a |id2 id2:generator

print('Ended loop for '+str(x))
rangeziter(3)

a = range2iter(3) Frames

rangeiter

X = next(a)

y = next(a) =

Zz = next(a) x (0

w = next(a) Return
value

<< First <Back Step 6 of 20 Forward > Last >>

yield is return

== next line to execute

for next()

Later Calls Resume After the yield

Visualize

Execute Code | Edit Code

def range2iter(n):

"""Generator for a range of squares"""

for x in range(n):
yield x*x
print('Ended loop for '+str(x))

a = rangeliter(3)

X = next(a)
y = next(a)
z = next(a)
W = next(a)

<< First <Back Step 8 of 20 Forward > Last >>

line that has just executed
==p next line to execute

Heap primitives

Use arrows

Globals Objects

global id1:function

) range2iter(n)
range2iter |id1

a |id2 id2:generator
x |0 rangeziter(3)
Frames

From last
time

rangeiter

Next call returns

to where it left off

Exception is Made Automatically

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows

def range2iter(n):

"""Generator for a range of squares"""

for x in range(n):
yield x*x
print('Ended loop for '+str(x))

a = rangeliter(3)

X = next(a)
y = next(a)
z = next(a)
w—p W = next(a)

<< First <Back = Program terminated

Stoplteration:

Globals Objects

global id1:function

. \ range2iter(n)
range2iter |id1

x |0
y (1
z 4

Frames

Exception when

generator 1s done

Return Statements Make Exceptions

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows

def range2iter(n):

"""Generator for a range of squares"""

for x in range(n):

yield x*x

print('Ended loop for '+str(x))
return x # The final x

a = rangeliter(3)
X = next(a)
y = next(a)
z = next(a)
— w = next(a)

<< First <Back = Program terminated

Stoplteration: 2

[Return Value

Globals Objects

global id1:function

. 5 range2iter(n)
range2iter |id1

x |0
y (1
z 4

Frames

Exception when

generator 1s done

Iterator Parameters

e The 1nitial call 1s essentially a constructor
= Creates a generator object
= Parameters used to initialize the object

e Pattern: Use an iterable parameter

= [terator loops over this iterable

= Jterator transforms contents of the iterable

= [terator yields the transformed data

e Generators often replace accumulator pattern

Accumulators: The Old Way

def add_one(Ist):
"""Returns copy with 1 added to every element

Precond: Ist is a list of all numbers""
copy =[] # accumulator

for x in 1st:

X=X+l

copy.append(x)

return copy

Generators: The New Way

def add_one(input)
"""Generates 1 added to each element of input

Precond: input is a iterable of all numbers™"

for x in input 4{ Much }
yield x +1 Simpler!

yield eliminates
the accumlator

Accumulators: The Old Way

def evens(lst):
"""Returns a copy with even elements only

Precond: Ist is a list of all numbers""
copy =[] # accumulator

for x in 1st:

ifx%2==0:

’ copy.append(x)

return copy

Generators: The New Way

def evens(input):
""(Generates only the even elements of input

Precond: input is a iterable of all numbers"™""

for x in input:
ifx% 2 ==0:
yield x

Accumulators: The Old Way

def average(lst):
"""Returns a running average of Ist (elt n is average of 1st[0:n])

Ex: average([1, 3, 8, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: 1st is a list of all numbers"""
result =[] # actual accumulator
sum = 0; count =0 # accumulator “helpers”
for x in 1st:
sum = sum+x; count = count+1
result.append(sum/count)

return result

Accumulators: The Old Way

def average(lst):
"""Returns a running average of Ist (elt n is average of Ist[O:n])

Ex: average([1, 3, 8, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: 1st is a list of all numbers"""

result = [] .
sum = 0: count = 0 Allows multiple
for x in lst: assignments per line

sum = sum+x;‘count = count+1
result.append(sum/count)

return result

Generators: The New Way

def average(input):
"""Generates a running average of input

Ex: input 1, 3, 5, 7 yields 1.0, 2.0, 3.0, 4.0

Precond: input is a iterable of all numbers"""
sum =0 # accumulator “helper”

count =0 # accumulator “helper”

for x in Ist:

sum = sum-+x

count = count+1

yield sum/count

Advanced Data Processing

* Previous lesson saw functions as variables

= Seemed like a weird but useless trick

It 1s very useful in large data processing
= Start with a function on a single piece of data
= Have a large set (list/tuple) of this data
" Want to apply function to every data in set

* We can process this data with a for-loop

= But write a new for-loop for each function?

Example: map()

def map(f,data)
"""Returns a copy of data, f applied to each entry

Precond: f is a function taking exactly one argument
Precond: data iterable, each elt satisfying precond of """
accum = []

for item in data:

| accum.append(f(item))

return accum Apply function f
to each item

Example: map()

def plusl(x) >>> g,=[1,8,3]
"""Returns x+1""" >>> D = map(plusl, a)
return x+1 >>> D
[3,3,4]
def negate(x): >>> ¢ = map(negate, a)
>>> 0
IIllIIReturnS _Xllllll
return -x [-1,2,-3]

The Generator Version

def map(f,data)
"""Generates f applied to each element

Precond: f is a function taking exactly one argument
Precond: data iterable, each elt satisfying precond of f"""

for item in data:
| yield f(item)

Apply function £
to each item

Example: filter()

def filter(f,data)
"""Returns a copy of data, removing anything f is False on

Precond: f is a boolean function taking exactly one argument
Precond: data iterable, each elt satisfying precond of """
accum = []

for item in daw,z{ iny ?dd if }
if f(item): f(item) 1s True

- accum.append(item)
return accum

Example: filter()

def iseven(x) >>> g, =[-%,1,4]
"""Rets True if x even""" >>> b = filter(iseven, a)
return x % & == >>>
[-2,4]
def 15p0s(x): >>> ¢ = filter(ispos, a)
>>> 0

""Rets True if x > 0"""

return x> 0 [1,4]

The Generator Version

def filter(f,data)
""(Generates all elements of data where f is True

Precond: f is a boolean function taking exactly one argument
Precond: data iterable, each elt satisfying precond of """

for item in da,mz{ iny ?dd if }
if f(item): f(item) is True

~ yield accum

These Are Famously Powerful

e Functions map and filter are very powerful tools
= Focus of study in advanced language courses

* Form the basis of data processing infrastructure

* They are building blocks to combine together
= The generators take iterables/iterators as input
= And the output 1s a 1iterator itself

* So you can chain these generators together

* Benefit: Python needs much less memory

= Only looks at one element at a time

Simple Chaining

input =) S gverage ol add_one [N

>>> g =[], R, 3, 4] # Start w/ any iterable
>>> b = add_one(average(evens(a))) # Apply right to left
>>> ¢ = list(b) # Convert to list/tuple
>>> 0

[8.0, 4.0]

Chaining with Map and Filter

iseven

v

v

input) NG > EYOEECE) B) output

>>> g =[1, 8, 3, 4]

>>> b = average(filter(iseven,a))
>>> b = map(plusl,b)

>>> ¢ = list(b)

Start w/ any iterable
Apply first funcs

Add map to chain

Convert to list/tuple

Python Encourages This Approach

e This 1s a natural way to process data
" Don’t write complex programs
= Just download functions and string together
= Will see this again if go on to 3110
* Python has a lot of these tools for you
= Generators map and filter are built-in!

= Other tools in the itertools module

* Worth exploring on your own

Module itertools

Infinite iterators:

Iterator Arguments
count () start, [step]
cycle() P

repeat() elem [,n]

Results

start, start+step, start+2*step, ...

po, pl, ... plast, p0, p1, ...

elem, elem, elem, ... endlessly or up
to n times

Iterators terminating on the shortest input sequence:

Iterator

accumulate()

chain()

chain.from iterable()

compress ()

AROUC Results
ments
pO, pO+pl,
p L] pO+pl+p2, ...
p0, pl, ... plast, qO0,
P, q, ... ql, ...
icerabie p0, pl, ... plast, O,
ql;: s
data, se- (d[0] if s[0]), (d[1] if
lectors s[1]), ...

Example

count(10) --> 10 11 12 13
140w e

cycle('ABCD') --=> A B CD
ASBICIDI e

repeat (10, 3) --> 10 10
10

Example
accumulate([1,2,3,4,5]) -->
136 10 15

chain('ABC', 'DEF') --> A B
CDEF

chain.from iterable(['ABC',
'DEF']) -~-=>ABCDEF

compress('ABCDEF',
[1,0,1,0,1,1]) --> A CETF

Module itertools

Infinite iterators:

Iterator Arguments Results
count () start, [step] start, start+step, start+2*step, ...
cycle() p po, pl, ... plast, p0, p1, ...

elem, elem, elem, ... endlessly or up
repeat() elem [,n]

to n times

Iterators terminati

Iterator CllmlllatiVG m&p

pO, pO+pl,
accumulate () p [,func] 00+p1+p2, ...
chaini 6 p0, pl, ... plast, qO0,

ql, ...

chain-fron I 4 for jterables

compress ()

lectors s[1]), ...

Example

count(10) --> 10 11 12 13
14 e

cycle('ABCD') --> A B C D
AERIC D

repeat (10, 3) --> 10 10
10

Example
accumulate([1,2,3,4,5]) -->
136 10 15

chain('ABC', 'DEF') --> A B
CDEF

chain.from iterable(['ABC',
'DEF']) --=> A BCDEF

compress('ABCDEF',
[1,0,1,0,1,1]) --> A CETF

Final Step of Chaining

* The last step of a chain 1s to convert “back”™
= Data less useful as a generator
" Would like a list/tuple; easier to manipulate

= Called materializing the computation

* Are there alternatives to list/tuple function?

= What if we could add code at materialization?
= We can, but only for lists (not tuples)

= Called list comprehension

List Comprehension

e Basic Format:
[<expression> for <var> in <iterable>]
" Looks like a backwards for-loop
= That because this 1s an expression
e Similar to conditional expressions:
<expression> if <boolean-exp> else <expression>
* Example: [x for x in iterable]

= This is the same as list(iterable)

Only Works for Lists

Contents of parens is a
generator expression

>>> (x for x in Ist) # Not a tuple
<generator object <genexpr>>

Traditional For-Loops

def add_one(Ist):
"""Returns copy with 1 added to every element

Precond: Ist is a list of all numbers""
copy =[] # accumulator

for x in 1st:

X=X+l

copy.append(x)

return copy

List Comprehension

def add_one(Ist):
"""Returns copy with 1 added to every element

Precond: 1st is a list of all numbers™"

return [x+1 for x in 1st]

For-Loops with Conditionals

def evens(lst):
"""Returns a copy with even elements only

Precond: Ist is a list of all numbers""
copy =[] # accumulator

for x in 1st:

ifx%2==0:

’ copy.append(x)

return copy

List Comprehension

def evens(lst):
"""Returns a copy with even elements only

Precond: 1st is a list of all numbers™"
return [x for x in Ist if x % & == 0]

Comprehension }

THIS IS VERY DIFFERENﬁ Filter

return [(x if x % 2 == 0 else None) for x in Ist]

Conditional
Expression

Nested For-Loops

def transpose(table):
"""Returns: copy of table with rows and columns swapped 1 2

Precondition: table is a (non-ragged) 2d List"""
numecols = len(table[0]) # All rows have same no. cols

result =[] # Result (new table) accumulator 5 6

for m in range(numecols):

newrow = [] # Single row accumulator
for row in table:

’ newrow.append(row[m]) # Create a new row list | 3 5
result.append(newrow) # Add result to table
return result 2 4 6

Nested For-Loops

def transpose(table):
"""Returns: copy of table with rows and columns swapped 1 2
Precondition: table is a (non-ragged) 2d List"""
numecols = len(table[0]) # All rows have same no. cols 3 4
return [[row[i] for row in table] for i in range(numecols)] 5 6
\)
Y
Comprehension @
\ Y / I 3 5

Comprehension 2 4 6

Recall: Dictionaries are Iterable

Start with a dictionary d = {'a":1, 'b".2}
Key Iterator: d.keys()
>>> list(d.keys())
['a','b']
Value Iterator: d.values()
>>> list(d.values())
[1,&]
Pair Iterator: d.items()
>>> list(d.items())
[("a',1),('D",Q)]

Dictionary Comprehension

e Basic Format:
{ <expl>:<expld> for <var> in <iterable> }
= <expl> i1s the key

= <expRk> 1s the value

= Pairs together form the dictionary

* Otherwise, just like list comprehension
= Can filter it (with an 1f at then end)

= Can nest it with other comprehension

Traditional For-Loops

def halve_grades(grades):
"""Returns a copy cutting all exam grades in half.

Precondition: grades has netids as keys, ints as values""
result = { }

for k in grades:

 result[k] = grades[k]//2

return result

Traditional For-Loops

def halve_grades(grades):
"""Returns a copy cutting all exam grades in half.

Precondition: grades has netids as keys, ints as values™"
return { k:grades[k]//2 for k in grades }

Traditional For-Loops

def extra_credit(grades,students,bonus):
"""Returns a copy of grades with extra credit assigned

Precond: grades has netids as keys, ints as values.
netids is a list of valid (string) netids, bonus an int"""
result = {}

for k in grades:

if k in students:

’ result[k] = grades[k]+bonus

else:

~ result[k] = grades[k]

return result

Traditional For-Loops

def extra_credit(grades,students,bonus):
"""Returns a copy of grades with extra credit assigned

Precond: grades has netids as keys, ints as values.
netids is a list of valid (string) netids, bonus an int"""
return { k:(grades[k]+bonus if k in students else grades[k])

for k in grades }

Final Words on Comprehension

Advantages Disadvantages

e Code very compact/concise e Harder to read/understand

e Python can optimize heavily ¢ Much harder to debug
(no wasteful accumulators) (more stuff on one line)

Use this technique sparingly

