
Generators

Module 28



Recall: The Range Iterable

range(x)

• Creates an iterable
§ Can be used in a for-loop
§ Makes ints (0, 1, ... x-1)

• But it is not a tuple!
§ A black-box for numbers
§ Entirely used in for-loop
§ Contents of folder hidden

Example

>>> range(3)
range(0,3)
>>> for x in range(3)
…        print(x)
0
1
2



Recall: The Range Iterable

range(x)

• Creates an iterable
§ Can be used in a for-loop
§ Makes ints (0, 1, ... x-1)

• But it is not a tuple!
§ A black-box for numbers
§ Entirely used in for-loop
§ Contents of folder hidden

Example

>>> range(3)
range(0,3)
>>> for x in range(3)
…        print(x)
0
1
2

Iterable: Anything that 
can be used in a for-loop



Iterators: Iterables Outside of For-Loops

• Iterators can manually extract elements
§ Get each element with the next() function
§ Keep going until you reach the end
§ Ends with a StopIteration (Why?)

• Can create iterators with iter() function
>>> a = iter([1,5,3])
>>> next(a)
1
>>> next(a)
5

Must be a 
iterable



Iterators Can Be Used in For-Loops

>>> a = iter([1,2])
>>> for x in a:
….     print(x)
….
1
2
>>> for x in a:
….     print(x)
….
>>>

Technically, iterators 
are also iterable

But they are 
one-use only!



Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
# Attribute _limit: end of range
# Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value



Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
# Attribute _limit: end of range
# Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

Defines the 
next() fcn



Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
# Attribute _limit: end of range
# Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

How far to go

How far we are

Raise error when 
gone too far



Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
# Attribute _limit: end of range
# Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

Essentially a 
loop variable

Update “loop” after
doing computation



Iterables are Also Classes

class range2(object):
"""Iterable class for squares of a range"""

def __init__(self,n):
"""Initializes a squares iterable"""
self._limit = n

def __iter__(self):
"""Returns a new iterator"""
return range2iter(self._limit)

Defines the
iter() function



Iterables are Also Classes

class range2(object):
"""Iterable class for squares of a range"""

def __init__(self,n):
"""Initializes a squares iterable"""
self._limit = n

def __iter__(self):
"""Returns a new iterator"""
return range2iter(self._limit)

Iterables are objects 
that generate 

iterators on demand



Iterators are Hard to Write!

• Has the same problem as GUI applications
§ We have a hidden loop
§ All loop variables are now attributes
§ Similar to inter-frame/intra-frame reasoning

• Would be easier if loop were not hidden
§ Idea: Write this as a function definition
§ Function makes loop/loop variables visible

• But iterators “return” multiple values
§ So how would this work?



The Wrong Way

def range2iter(n):
"""
Iterator for the squares of numbers 0 to n-1

Precondition: n is an int >= 0
"""
for x in range(n):

return x*x Stops at the
first value



The yield Statement

• Format: yield <expression>
§ Used to produce a value
§ But it does not stop the “function”
§ Useful for making iterators

• But: These are not normal functions
§ Presence of a yield makes a generator
§ Function that returns an iterator



The yield Statement

• Format: yield <expression>
§ Used to produce a value
§ But it does not stop the “function”
§ Useful for making iterators

• But: These are not normal functions
§ Presence of a yield makes a generator
§ Function that returns an iterator

More on this distinction in a bit



The Generator approach

def range2iter(n):
"""
Generator for the squares 
of numbers 0 to n-1

Precon: n is an int >= 0
"""
for x in range(n):

yield x*x

>>> a = range2iter(3)
>>> a
<generator object>
>>> next(a)
0
>>> next(a)
1
>>> next(a)
4



The Generator approach

def range2iter(n):
"""
Generator for the squares 
of numbers 0 to n-1

Precon: n is an int >= 0
"""
for x in range(n):

yield x*x

>>> a = range2iter(3)
>>> a
<generator object>
>>> next(a)
0
>>> next(a)
1
>>> next(a)
4

Essentially 
a constructor



What Happens on a Function Call?

No call 
frame

Creates 
a generator



next() Initiates a Function Call

Frame for 
next()

Comes from 
original call



Call Finishes at the yield

yield is return
for next()



Later Calls Resume After the yield

Next call returns 
to where it left off

From last 
time



Exception is Made Automatically

Exception when 
generator is done



Return Statements Make Exceptions

Exception when 
generator is done

Return Value



Iterator Parameters

• The initial call is essentially a constructor
§ Creates a generator object
§ Parameters used to initialize the object

• Pattern: Use an iterable parameter
§ Iterator loops over this iterable
§ Iterator transforms contents of the iterable
§ Iterator yields the transformed data

• Generators often replace accumulator pattern



Accumulators: The Old Way

def add_one(lst):
"""Returns copy with 1 added to every element

Precond: lst is a list of all numbers"""
copy = []  # accumulator
for x in lst:

x = x +1 
copy.append(x)

return copy



Generators: The New Way

def add_one(input)
"""Generates 1 added to each element of input

Precond: input is a iterable of all numbers"""

for x in input :
yield x +1

Much 
Simpler!

yield eliminates
the accumlator



Accumulators: The Old Way

def evens(lst):
"""Returns a copy with even elements only

Precond: lst is a list of all numbers"""
copy = []  # accumulator
for x in lst:

if x % 2 == 0:
copy.append(x)

return copy



Generators: The New Way

def evens(input):
"""Generates only the even elements of input

Precond: input is a iterable of all numbers"""

for x in input:
if x % 2 == 0:

yield x



Accumulators: The Old Way

def average(lst):
"""Returns a running average of lst (elt n is average of lst[0:n])

Ex: average([1, 3, 5, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: lst is a list of all numbers"""
result = []                  # actual accumulator    
sum = 0; count = 0    # accumulator “helpers”
for x in lst:

sum = sum+x; count = count+1
result.append(sum/count)

return result



Accumulators: The Old Way

def average(lst):
"""Returns a running average of lst (elt n is average of lst[0:n])

Ex: average([1, 3, 5, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: lst is a list of all numbers"""
result = []                  # actual accumulator    
sum = 0; count = 0    # accumulator “helpers”
for x in lst:

sum = sum+x; count = count+1
result.append(sum/count)

return result

Allows multiple 
assignments per line



Generators: The New Way

def average(input):
"""Generates a running average of input

Ex: input 1, 3, 5, 7 yields 1.0, 2.0, 3.0, 4.0

Precond: input is a iterable of all numbers"""
sum = 0       # accumulator “helper”
count = 0     # accumulator “helper”
for x in lst:

sum = sum+x
count = count+1
yield sum/count



Advanced Data Processing

• Previous lesson saw functions as variables
§ Seemed like a weird but useless trick

• It is very useful in large data processing
§ Start with a function on a single piece of data
§ Have a large set (list/tuple) of this data
§ Want to apply function to every data in set

• We can process this data with a for-loop
§ But write a new for-loop for each function?



Example: map()

def map(f,data)
"""Returns a copy of data, f applied to each entry

Precond: f is a function taking exactly one argument
Precond: data iterable, each elt satisfying precond of f"""
accum = []
for item in data:

accum.append( f(item) )
return accum Apply function f

to each item



Example: map()

def plus1(x)
"""Returns x+1"""
return x+1

def negate(x):
"""Returns –x"""
return -x

>>> a = [1,2,3]
>>> b = map(plus1, a)
>>> b
[2,3,4]
>>> c = map(negate, a)
>>> c
[-1,-2,-3]



The Generator Version

def map(f,data)
"""Generates f applied to each element

Precond: f is a function taking exactly one argument
Precond: data iterable, each elt satisfying precond of f"""

for item in data:
yield f(item)

Apply function f
to each item



Example: filter()

def filter(f,data)
"""Returns a copy of data, removing anything f is False on

Precond: f is a boolean function taking exactly one argument
Precond: data iterable, each elt satisfying precond of f"""
accum = []
for item in data:

if f(item):
accum.append( item)

return accum

Only add if
f(item) is True



Example: filter()

def iseven(x)
"""Rets True if x even"""
return x % 2 == 0

def ispos(x):
"""Rets True if x > 0"""
return x > 0

>>> a = [-2,1,4]
>>> b = filter(iseven, a)
>>> b
[-2,4]
>>> c = filter(ispos, a)
>>> c
[1,4]



The Generator Version

def filter(f,data)
""”Generates all elements of data where f is True

Precond: f is a boolean function taking exactly one argument
Precond: data iterable, each elt satisfying precond of f"""

for item in data:
if f(item):

yield accum

Only add if
f(item) is True



These Are Famously Powerful

• Functions map and filter are very powerful tools
§ Focus of study in advanced language courses
§ Form the basis of data processing infrastructure

• They are building blocks to combine together
§ The generators take iterables/iterators as input
§ And the output is a iterator itself
§ So you can chain these generators together

• Benefit: Python needs much less memory
§ Only looks at one element at a time



Simple Chaining

>>> a = [1, 2, 3, 4]                             # Start w/ any iterable
>>> b = add_one(average(evens(a))) # Apply right to left
>>> c = list(b)                                   # Convert to list/tuple
>>> c
[3.0, 4.0]

evens average add_one outputinput



Chaining with Map and Filter

>>> a = [1, 2, 3, 4]                             # Start w/ any iterable
>>> b = average(filter(iseven,a)) # Apply first funcs
>>> b = map(plus1,b)                         # Add map to chain
>>> c = list(b)                                    # Convert to list/tuple

filter average map outputinput

iseven plus1



Python Encourages This Approach

• This is a natural way to process data
§ Don’t write complex programs
§ Just download functions and string together
§ Will see this again if go on to 3110

• Python has a lot of these tools for you
§ Generators map and filter are built-in!
§ Other tools in the itertools module

• Worth exploring on your own



Module itertools



Module itertools

Cumulative map

+ for iterables



Final Step of Chaining

• The last step of a chain is to convert “back”
§ Data less useful as a generator
§ Would like a list/tuple; easier to manipulate
§ Called materializing the computation

• Are there alternatives to list/tuple function?
§ What if we could add code at materialization?
§ We can, but only for lists (not tuples)
§ Called list comprehension



List Comprehension

• Basic Format:
[ <expression> for <var> in <iterable> ]
§ Looks like a backwards for-loop
§ That because this is an expression

• Similar to conditional expressions:
<expression> if <boolean-exp> else <expression>

• Example: [x for x in iterable] 
§ This is the same as list(iterable)



Only Works for Lists

>>> ( x for x in lst )  # Not a tuple
<generator object <genexpr>>

Contents of parens is a 
generator expression



Traditional For-Loops

def add_one(lst):
"""Returns copy with 1 added to every element

Precond: lst is a list of all numbers"""
copy = []  # accumulator
for x in lst:

x = x +1 
copy.append(x)

return copy



List Comprehension

def add_one(lst):
"""Returns copy with 1 added to every element

Precond: lst is a list of all numbers"""
return [x+1 for x in lst]



For-Loops with Conditionals

def evens(lst):
"""Returns a copy with even elements only

Precond: lst is a list of all numbers"""
copy = []  # accumulator
for x in lst:

if x % 2 == 0:
copy.append(x)

return copy



List Comprehension

def evens(lst):
"""Returns a copy with even elements only

Precond: lst is a list of all numbers"""
return [ x for x in lst if x % 2 == 0]

# THIS IS VERY DIFFERENT
# return [ (x if x % 2 == 0 else None) for x in lst]

Comprehension
Filter

Conditional
Expression



Nested For-Loops

def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
numcols = len(table[0])   # All rows have same no. cols
result = []                        # Result (new table) accumulator 
for m in range(numcols): 

newrow = []                         # Single row accumulator
for row in table:

newrow.append(row[m])  # Create a new row list
result.append(newrow)        # Add result to table

return result

1    2

3 4   

5    6

1 3    5

2 4    6



Nested For-Loops

def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
numcols = len(table[0])   # All rows have same no. cols
return [[row[i] for row in table] for i in range(numcols)]

1    2

3 4   

5    6

1 3    5

2 4    6

Comprehension

Comprehension



Recall: Dictionaries are Iterable

• Start with a dictionary d = {'a':1, 'b':2}
• Key Iterator: d.keys() 

>>> list(d.keys())
['a','b']

• Value Iterator: d.values()
>>> list(d.values())
[1,2]

• Pair Iterator: d.items()
>>> list(d.items())
[('a',1),('b',2)]



Dictionary Comprehension

• Basic Format:
{ <exp1>:<exp2> for <var> in <iterable> }
§ <exp1> is the key
§ <exp2> is the value
§ Pairs together form the dictionary

• Otherwise, just like list comprehension
§ Can filter it (with an if at then end)
§ Can nest it with other comprehension



Traditional For-Loops

def halve_grades(grades):
"""Returns a copy cutting all exam grades in half.

Precondition: grades has netids as keys, ints as values"""
result = {}
for k in grades:

result[k] = grades[k]//2
return result



Traditional For-Loops

def halve_grades(grades):
"""Returns a copy cutting all exam grades in half.

Precondition: grades has netids as keys, ints as values"""
return { k:grades[k]//2 for k in grades }



Traditional For-Loops

def extra_credit(grades,students,bonus):
"""Returns a copy of grades with extra credit assigned

Precond: grades has netids as keys, ints as values.
netids is a list of valid (string) netids, bonus an int"""
result = {}
for k in grades:

if k in students:
result[k] = grades[k]+bonus

else:
result[k] = grades[k]

return result



Traditional For-Loops

def extra_credit(grades,students,bonus):
"""Returns a copy of grades with extra credit assigned

Precond: grades has netids as keys, ints as values.
netids is a list of valid (string) netids, bonus an int"""
return { k:(grades[k]+bonus if k in students else grades[k]) 

for k in grades }



Final Words on Comprehension

Advantages

• Code very compact/concise
• Python can optimize heavily

(no wasteful accumulators)

Disadvantages

• Harder to read/understand
• Much harder to debug

(more stuff on one line)

Use this technique sparingly


