Module 30

Searching & Sorting



Linear Search

def linear_search(v,b):

"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number

mnmn / \
# Loop variable How many entries do
1=0 we have to look at?
while i <len(b) and b[i] = v: \_ W
=i+l

if i ==len(b): # not found
’ return -1

return i



Linear Search

def linear_search(v,b):

"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number

nmn K \
# Loop variable How many entries do
1=0 we have to look at?
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Linear Search

def linear_search(v,b):

"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number

1nin K \
# Loop variable How many entries do
1=len(byl we have to look at?
while i >= 0 and bl[i] I= v: \_ W
Ci=i-1

4 Equals -1 if not found _ All of them!
return i




Is There a Better Way?

e Thinking of number 0..100

" You get to guess number
= [ tell you higher or lower
= Continue until get it right

' ‘ > Goal: Keep # guesses low

0 50 100 = Use my answers to help

e Strategy?
= Start guess in the middle
= Answer eliminates half

= Go to middle of remaining
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Is There a Better Way?

e Thinking of number 0..100

" You get to guess number
= [ tell you higher or lower
= Continue until get it right

| ‘ ‘ ’ y ° Goal: Keep # guesses low
|

50 68 100 = Use my answers to help

Correct! * Strategy?

= Start guess in the middle
= Answer eliminates half

= Go to middle of remaining



Binary Search

def binary_search(v,b):
# Loop variable(s)
i=0,j=len(b)

mid = (i+j)//%&
if b[mid] < v:

~ j=mid

elif b[mid] > v:
i =mid
else:

return mid

return -1 # not found

while i <j and b[i] = v:

-

-

Requires that the

data 1s sorted!

~

/

But few checks!



Observation About Sorting

e Sorting data can speed up searching
= Sorting takes time, but do it once
= Afterwards, can search many times

* Not just searching. Also speeds up
= Duplicate elimination in data sets

= Data compression

= Physics computations in computer games

* Why it 1s a major area of computer science



The Sorting Challenge

e Given: A list of numbers

* Goal: Sort those numbers using only
= Jteration (while-loops or for-loops)
= Comparisons (< or >)
= Assignment statements
 Why? For proper analysis.
= Methods/functions come with hidden costs
= Everything above has no hidden costs

= Each comparison or assignment is “1 step”



This Requires Some Notation

e As the list 1s sorted...
= Part of the list will be sorted

= Part of the list will not be sorted
* Need a way to refer to portions of the list
= Notation to refer to sorted/unsorted parts

* And have to do 1t without slicing!

= Slicing makes a copy

= Want to sort original list, not a copy



This Requires Some Notation

e As the list 1s sorted...
= Part of the list will be sorted

| Part Of 1-],.A ) DAL | I R JE Y R |
But we will be less formal list

than in past years!

e Need a w

= Notatio!

* And have to do 1t without slicing!

= Slicing makes a copy

= Want to sort original list, not a copy



Terminology: Range Notation

° m..n 1s a range containing n+1-m values

= 2.5 contains 2,3.,4,5. Contains 5+1 — 2 =4 values
= 2.4 contains 2,3, 4. Contains 4+1 — 2 = 3 values
= 2.3 contains 2, 3. Contains 3+1 — 2 = 2 values
= 2.2 contains 2. Contains 2+1 — 2 =1 values

= 2.1 contains ?7?

A: nothing

B:2.1
<What does 2..1 contain?> C:1
D: 2

E: something else




Terminology: Range Notation

° m..n 1s a range containing n+1-m values

2.5
2.4
2.3
2.2
2.1

contains
contains
contains
contains

contains

2,3,4,5.
2,3,4.
2,3.

2.

777

<What does 2..1 contain?>

Contains 5+1 — 2 = 4 values
Contains 4+1 — 2 = 3 values
Contains 3+1 — 2 =2 values
Contains 2+1 — 2 =1 values

[A: nothing

B:2.1

C:1

D: 2

E: something else




Terminology: Range Notation

° m..n 1s a range containing n+1-m values

= 2.5 contains 2,3.4,5. CCzuuueee——— 1 C S

= 2.4 contains 2,3, 4. ¢ Not the same IS
= 2.3 contains 2, 3. o as range(m,n) [E
= 2.2 contains 2. CoOnrtanmno 2 = —rvealues

= 2.1 contains ?7??

e The notation m..n, always implies that m <= n+1
= So you can assume that even if we do not say it

* If m =n+1, the range has O values



Horizontal Notation

* Want a pictoral way to visualize this sorting

= Represent the list as long rectangle

= We saw this idea 1n divide-and-conquer

0 h k
b
T h h+1
* Do not show individual boxes
= Just dividing lines between regions
(h+1)—h=1

= Label dividing lines with indices
= But index 1s either left or right of dividing line



Horizontal Notation

e Label regions with properties

= Example: Sorted or 777

0

k

b sorted

77

= p[0..k—1] 1s sorted

= b[k..n-1] unknown (might be sorted)

* Picture allows us to track progress




Visualizing Sorting

0
Start: b ?
0
Goal: b sorted
0 1

In-Progress: b sorted ?




Insertion Sort

0 1 n
b sorted 9
i=0
while i < n: 0 i
# Push b[i] down into its 2 4 4(6 6 7]5
# sorted position in b[O0..i] 0 i
i =i+] 24456 6|7

Remember the restrictions!




Insertion Sort: Moving into Position

i=0

0) 1

while i < n: 2446675

push_down(b,i) A
i=1i+1

def push_down(b, i):

j=1i

while j > 0: swap shown in the
if b[j-1] > b[j]: lecture about lists
| swap(b,j-1,j)

J=Jl




Insertion Sort: Moving into Position

i=0

0) 1
while i < n: 2446675
push_down(b,i) A
i=i+1 0 i
24466 5|7
def push_down(b, i): A
i=i
while j > 0:

swap shown in the
if b[j-1] > b[j]: lecture about lists

| swap(b,j-1,j)
j=Jl




Insertion Sort: Moving into Position

i=0 0 .
1
while i < n: Y4 46675
push_down(b,i) KA
i=1i+1] 0 i
24466 5|7

def push_down(b, i): A
j=1 0 i
while j > 0: . 24465 6|7

swap shown in the XA
if b[j-1] > b[j]: lecture about lists

| swap(b,j-1,j)
j=Jl




Insertion Sort: Moving into Position

i=0 0
1
while i < n: Y4 46675
push_down(b,i) KA
i=1i+1] 0 i
24466 5|7
def push_down(b, i): A
j=1 0 i
while j > O: . 24465 6|7
swap shown in the XA
if b[j-1] > b[j]: lecture about lists
| swap(b,j-1,)) 0 1
(i1 24456 6|7




The Importance of Helper Functions

i=0

while i <n:
push_down(b,i)
i=i+l

def push_down(b, i):

j=1i

while j > O:

if b[j-1] > b[j]:

- swap(b-1,)
j=¥l

i=0

Can you understand
all this code below?

while i < n:

j=1i
while j > 0:

if b[j-1] > b[jl:
temp = b[j]
b[jl = b{j-1]
b[j-1] = temp

J=J-1
i=1+1




Measuring Performance

* Performance 1s a tricky thing to measure
= Different computers run at different speeds

= Memory also has a major effect as well

* Need an independent way to measure
" Measure in terms of “basic steps”
= Example: Searching counted # of checks
e For sorting, we measure 1n terms of swaps

* Three assignment statements

" Present 1n all sorting algorithms



Insertion Sort: Performance

def push_down(b, i): e b[0..1-1]:1elements
"""Push value at position i into Worst case:
sorted position in b[0..i-1]""
j=1i

while j > O:

if b[j-1] > b[jl:

- swap(b,j-1)

J=Jl

= 1=0:0 swaps
= 1=1:1swap
" 1=2:2 swaps
e Pushdown is in a loop
= Called for1in 0..n

" 1 swaps each time

Total Swaps: 0+ 1 +2 +3 + ... (n-1) = (n-1)*n/2 = (n?-n)/2




Insertion Sort: Performance

def push_down(b, i): e b[0..1-1]:1elements
"""Push value at position iinto Worst case:
sorted position in b[0..i-1]""
j=1

while j > O:

if b[j-1] > b[j]:

| swap(b,j-1,j)

= 1=0:0 swaps
= 1=1:1swap
" 1=2:2 swaps
e Pushdown is in a loop
= Called for1in 0..n

J=Jl , , . .
Insertion sort is | ® 1swaps each time

an n? algorithm

Total Swaps: 0+ 1 +2 +3 + ... (n-1) = (n-1)*n/2 = (n?-n)/2




Algorithm “Complexity”’

e Given: a list of length n and a problem to solve
* Complexity: rough number of steps to solve worst case

* Suppose we can compute 1000 operations a second:

logn 0.003 s 0.006 s 0.01 s
n 001 s 0.1s ls
nlogn 0.016 s 0.32s 4.79 s
n° 0.1s 10 s 16.7 m
n’ ls 16.7 m 11.6d

20 ls 4x10P° y 3x10%y



Algorithm “Complexity”’

e Given: a list of length n and a problem to solve
e Complexity: rough number of steps to solve worst case

* Suppose we can compute 1000 operations a second:

Complexity — n=1000

Binary Search

logn 0.006 s 0.01 s
L Linear Search 0.1's ls
nlogn U.UT6 s 0.32s 4.79 s
n’ <[ Insertion Sort } 10's 16.7m
n’ TS 16.7 m 11.6d

20 ls 4x10P° y 3x10%y



Algorithm “Complexity”’

e Given: a list of length n and a problem to solve
e Complexity: rough number of steps to solve worst case
* Suppose we can compute 1000 operations a second:

log n I T 001 s
n Major Topic in 2110: ls
R Beyond scope of this course [EEEE
n> 16.7 m
n’ ls 16.7 m 11.6d

20 ls 4x10P° y 3x10%y



Insertion Sort is Not Great

» Typically n” is okay, but not great

= Will perform horribly on large data

* Very bad when performance critical (games)
* We would like to do better than this

= Can we get n swaps (no)?

= How about n log n (maybe)
e This will require a new algorithm

= [et’s return to horizontal notation



A New Algorthm

0
Start: b ?
0
Goal: b sorted
0 1
In-Progress: b sorted, < b[i..] > b[0..i-1]

First segment always
contains smaller values



Selection Sort

0 1 n
b sorted , < b[i..] > b[0..i-1]

1

i=0 2 4466/899789
while i <n: ;
# Find minimum in bl[i..] 24466|(799889
# Move it to position i i

= i4] 24466799889

Remember the restrictions!




Selection Sort

How fast 1s this?

1

1=0 24466/899789

while i <n: :
j=index of min of b[i.n-1] |24466/799889
swap(b,i,j) i

i =i+] 244667998809




Selection Sort

This is also n?!

1

1=0 24466/899789

while i <n: :
j=index of min of b[i.n-1] |24466/799889
swap(b,i,j) i

This isnsteps}
244667199889

1=1+1




What is the Problem

* Both insertion, selection sort are nested loops

= Quter loop over each element to sort
* Inner loop to put next element 1in place
= Each loop is n steps. n X n =n?
* To do better we must eliminate a loop
= But with what? Recursion!

e But to do this we have to back up a bit

= Need to introduce an intermediate algorithm



The Problem Statement

e (Given a list b[h..k] with some value X 1n b[h]:
h

Start: b | X ?

 Swap elements of b[h. k] to get this answer

h i i+l
Goal: b <=X X >= X
h 1 ]
In-Progress: b <=X X ? >= X

Indices b, h important!

Might partition only part




Partition Algorithm

e (@iven a list segment b[h..k] with some value x in b[h]:

h k
Start: b | x ?
* Swap elements of b[h. k] to get this answer
h 1 1+1 k
Goal: b <=X X >=X
h k
change: b (354162381
h : K e x 1s called the pivot value
nto bl121354638 = X is not a program variable
h i K = denotes value initially in b[h]
o1 b123134568




Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"™""
i=h;j=k+1;x="Dlh]

while i < j1: e ~N

Fpfi+1]>=x: partition(b,h k), not partition(b[h:k+1])
# Move to end of block.

swap(b,i+1,j-1)
i=j-1 We want to partition the original list
else: # bli+1] < x \. /

Remember, slicing always copies the list!

swap(b,i,i+1)
i=i+1

return i

12/3/19 Sequences (Continued) 41



Partition Algorithm Implementation

def partition(b, h, k): <=X|X ? >= X
"""Partition list b[h. k] around a pivot x = b[h]"" h i |i+] J k
i=h;j=k+l;x=D[h] 1 2(3|1 5 0(6 3 8
while i < j-1:

if b[i+1] >= x:
# Move to end of block.
swap(b,i+1,j-1)
J=Jj-1

else: #D[i+1]<x
swap(b,i,i+1)
i=i+1

return i

12/3/19 Sequences (Continued) 42



Partition Algorithm Implementation

def partition(b, h, k): <=X|X ? >= X
"""Partition list b[h..k] around a pivot x = b[h]"™"" h 1 [1+1 ] k
1=h;j=k+I; x=Dblh] 1 2(3|/1 50[{6 3 8
while i < j-1: h =>1 1+l ] k

if b[i+1] >= x: 1 2 13|15 06 3 8
# Move to end of block. N
swap(b,i+1,j-1)
J=Jj-1

else: #D[i+1]<x
swap(b,i,i+1)
i=i+1

return i

12/3/19 Sequences (Continued)



Partition Algorithm Implementation

def partition(b, h, k): <=X|X ? >= X
"""Partition list b[h..k] around a pivot x = b[h]"™"" h 1 [1+1 ] k
1=h;j=k+l;x=D[h] 1 2|13|/1 506 3 8
while i < j-1: h =>1 1+l ] k

if b[i+1] >= x: 1 2 1/3|/5 0(6 3 8
# Move to end of block. N

§w§p(f,1+ld-l) h ; [P K
J=J-

else: # bli+l]<x 12 1]3]0]563 38
swap(b,i,i+1) A

i=i+1

return i

12/3/19 Sequences (Continued)



Partition Algorithm Implementation

def partition(b, h, k): <=X|X ? >= X
"""Partition list b[h..k] around a pivot x = b[h]"™"" h 1 [1+1 ] k
1=h;j=k+l;x=D[h] 1 2|13|/1 506 3 8
while i < j-1: h =>1 1+l ] k

if b[i+1] >= x: 1 2 1/3|/5 0(6 3 8
# Move to end of block. N
i e
else: # bli+l]<x 12 1]3]0]563 38
swap(b,i,i+1) A
i=i+1 h —>1 ] k
1 2 10|35 6 3 8
return i A

12/3/19 Sequences (Continued)



Why is this Useful?

* Will use this algorithm to replace inner loop

* The 1nner loop cost us n swaps every time

e Can this reduce the number of swaps?
" Worst case 1s k-h swaps
= This 1s n 1f partitioning the whole list

= But less if only partitioning part

e Idea: Break up list and partition only part?

= This 1s Divide-and-Conquer!



Sorting with Partitions

e (@iven a list segment b[h..k] with some value x in b[h]:

Start: b

Goal: b

h k
X ?
* Swap elements of b[h. k] to get this answer
h 1 1+1 k
<=X X >=X
\ )
Y

Partition Recursively

Recursive partitions = sorting
= Called QuickSort (why??7?)

= Popular, fast sorting technique




Sorting with Partitions

e (@iven a list segment b[h..k] with some value x in b[h]:

Start: b

Goal: b

h k
X ?
* Swap elements of b[h. k] to get this answer
h 1 1+1 k
y ? X >=X
\ )

Y

Partition Recursively

Recursive partitions = sorting
= Called QuickSort (why??7?)

= Popular, fast sorting technique




Sorting with Partitions

e (@iven a list segment b[h..k] with some value x in b[h]:

Start: b

Goal: b

h k
X ?
* Swap elements of b[h. k] to get this answer
h 1 1+1 k
<=y |Y >=Yy X >= X
\ )
Y

Partition Recursively

Recursive partitions = sorting
= Called QuickSort (why??7?)

= Popular, fast sorting technique




QuickSort

def quick_sort(b, h, k):
"""Sort the array fragment b[h..k]"""

return
j = partition(b, h, k)
# b[h..j—1] <= Db[j] <= b[j+1..k]
# Sort b[h..j—1] and b[j+1..K]
quick_sort (b, h, j—1)
quick_sort (b, j+1, k)

if b[h..k] has fewer than 2 elements:

pre: b

post: b

Worst Case:
array already sorted

= QOr almost sorted

= n2in that case

Average Case:
array 1s scrambled

* n log n in that case

= Best sorting time!

1 1+1

k

<=X

>=X




S0 Does that Solve It?

e Worst case still seems bad! Still n2

* Only happens

= Just happens t

e Can greatly red

1in small number of cases

nat case 1s common (already sorted)

luce 1ssue with randomization

= Swap start with random element 1n list

= Now pivot is random and already sorted unlikely

Start: b

h

1 k

X

? y ?

A




S0 Does that Solve It?

* Worst case still seems bad! Still n2
* Only happens in small number of cases

= Just ha Ay sorted)

Makes it “good enough”
for most applications

e Can gre: zation

= Swap ¢

= Now pivot is random and already sorted unlikely
h i k

Start: b | x ? y ?

"~ A




Can We Do Better?

e There 1s guaranteed n log n sorting algorithm
= Called merge sort (beyond scope of course)
= Used heavily in large databases

= But it has high overhead (slower on small data)

* What does the sort() method use?
= Uses Timsort (invented by Tim Peters in 2002)
* Combination of insertion sort and merge sort

= Insertion on small data, merge sort on large



Can We Do Better?

e There 1s guaranteed n log n sorting algorithm
= Called merge sort (beyond scope of course)
= Used heavily in large databases

= But it has high overhead (slower on small data)

* What does the sort() method use?
= Uses Timsort (invented by Tim Peters in 2002)

= Combination of insertio t
Quicksort is 1959!

= [nsertion on small data,




