
Searching & Sorting

Module 30

Linear Search

def linear_search(v,b):
"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
"""
Loop variable
i = 0
while i < len(b) and b[i] != v:

i = i + 1

if i == len(b): # not found
return -1

return i

How many entries do
we have to look at?

Linear Search

def linear_search(v,b):
"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
"""
Loop variable
i = 0
while i < len(b) and b[i] != v:

i = i + 1

if i == len(b): # not found
return -1

return i

How many entries do
we have to look at?

All of them!

Linear Search

def linear_search(v,b):
"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
"""
Loop variable
i = len(b)-1
while i >= 0 and b[i] != v:

i = i - 1

Equals -1 if not found
return i

How many entries do
we have to look at?

All of them!

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Higher!

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Lower!
75

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Higher!
7562

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Correct!
68

Binary Search

def binary_search(v,b):
Loop variable(s)
i = 0, j = len(b)
while i < j and b[i] != v:

mid = (i+j)//2
if b[mid] < v:

j = mid
elif b[mid] > v:

i = mid
else:

return mid
return -1 # not found

Requires that the
data is sorted!

But few checks!

Observation About Sorting

• Sorting data can speed up searching
§ Sorting takes time, but do it once
§ Afterwards, can search many times

• Not just searching. Also speeds up
§ Duplicate elimination in data sets
§ Data compression
§ Physics computations in computer games

• Why it is a major area of computer science

The Sorting Challenge

• Given: A list of numbers
• Goal: Sort those numbers using only

§ Iteration (while-loops or for-loops)
§ Comparisons (< or >)
§ Assignment statements

• Why? For proper analysis.
§ Methods/functions come with hidden costs
§ Everything above has no hidden costs
§ Each comparison or assignment is “1 step”

This Requires Some Notation

• As the list is sorted…
§ Part of the list will be sorted
§ Part of the list will not be sorted

• Need a way to refer to portions of the list
§ Notation to refer to sorted/unsorted parts

• And have to do it without slicing!
§ Slicing makes a copy
§ Want to sort original list, not a copy

This Requires Some Notation

• As the list is sorted…
§ Part of the list will be sorted
§ Part of the list will not be sorted

• Need a way to refer to portions of the list
§ Notation to refer to sorted/unsorted parts

• And have to do it without slicing!
§ Slicing makes a copy
§ Want to sort original list, not a copy

But we will be less formal
than in past years!

Terminology: Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

A: nothing
B: 2,1
C: 1
D: 2
E: something else

What does 2..1 contain?

Terminology: Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

A: nothing
B: 2,1
C: 1
D: 2
E: something else

What does 2..1 contain?

Terminology: Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

• The notation m..n, always implies that m <= n+1
§ So you can assume that even if we do not say it

§ If m = n+1, the range has 0 values

Not the same
as range(m,n)

Horizontal Notation

• Want a pictoral way to visualize this sorting
§ Represent the list as long rectangle
§ We saw this idea in divide-and-conquer

• Do not show individual boxes
§ Just dividing lines between regions
§ Label dividing lines with indices
§ But index is either left or right of dividing line

b
0 h k

h h+1

(h+1) – h = 1

Horizontal Notation

• Label regions with properties
§ Example: Sorted or ???

§ b[0..k–1] is sorted
§ b[k..n-1] unknown (might be sorted)

• Picture allows us to track progress

b sorted ???
0 k n

Visualizing Sorting

?
0 n

Start: b

sorted
0 n

Goal: b

sorted
0 i n

In-Progress: b ?

Insertion Sort

i = 0
while i < n:

Push b[i] down into its
sorted position in b[0..i]
i = i+1

2 4 4 6 6 7 5
0 i

2 4 4 5 6 6 7
0 i

Remember the restrictions!

sorted
0 i n

b ?

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

2 4 4 6 6 7 5
0 i

swap shown in the
lecture about lists

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

swap shown in the
lecture about lists

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

swap shown in the
lecture about lists

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

2 4 4 5 6 6 7
0 i

swap shown in the
lecture about lists

The Importance of Helper Functions

i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

i = 0
while i < n:

j = i
while j > 0:

if b[j-1] > b[j]:
temp = b[j]
b[j] = b[j-1]
b[j-1] = temp

j = j -1
i = i +1

VS

Can you understand
all this code below?

Measuring Performance

• Performance is a tricky thing to measure
§ Different computers run at different speeds
§ Memory also has a major effect as well

• Need an independent way to measure
§ Measure in terms of “basic steps”
§ Example: Searching counted # of checks

• For sorting, we measure in terms of swaps
§ Three assignment statements
§ Present in all sorting algorithms

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

• b[0..i-1]: i elements
• Worst case:

§ i = 0: 0 swaps
§ i = 1: 1 swap
§ i = 2: 2 swaps

• Pushdown is in a loop
§ Called for i in 0..n
§ i swaps each time

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n2-n)/2

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

• b[0..i-1]: i elements
• Worst case:

§ i = 0: 0 swaps
§ i = 1: 1 swap
§ i = 2: 2 swaps

• Pushdown is in a loop
§ Called for i in 0..n
§ i swaps each time

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n2-n)/2

Insertion sort is
an n2 algorithm

Algorithm “Complexity”
• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
log n 0.003 s 0.006 s 0.01 s

n 0.01 s 0.1 s 1 s
n log n 0.016 s 0.32 s 4.79 s

n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

Algorithm “Complexity”
• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
log n 0.003 s 0.006 s 0.01 s

n 0.01 s 0.1 s 1 s
n log n 0.016 s 0.32 s 4.79 s

n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

Binary Search

Linear Search

Insertion Sort

Algorithm “Complexity”
• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
log n 0.003 s 0.006 s 0.01 s

n 0.01 s 0.1 s 1 s
n log n 0.016 s 0.32 s 4.79 s

n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

Major Topic in 2110:
Beyond scope of this course

Insertion Sort is Not Great

• Typically n2 is okay, but not great
§ Will perform horribly on large data
§ Very bad when performance critical (games)

• We would like to do better than this
§ Can we get n swaps (no)?
§ How about n log n (maybe)

• This will require a new algorithm
§ Let’s return to horizontal notation

A New Algorthm

?
0 n

Start: b

sorted
0 n

Goal: b

sorted, ≤ b[i..]
0 i n

In-Progress: b ≥ b[0..i-1]

First segment always
contains smaller values

Selection Sort

i = 0
while i < n:

Find minimum in b[i..]
Move it to position i
i = i+1

sorted , ≤ b[i..]
0 i n

b ≥ b[0..i-1]

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

Remember the restrictions!

Selection Sort

i = 0
while i < n:

j = index of min of b[i..n-1]
swap(b,i,j)
i = i+1

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

How fast is this?

Selection Sort

i = 0
while i < n:

j = index of min of b[i..n-1]
swap(b,i,j)
i = i+1

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

This is also n2!

This is n steps

What is the Problem

• Both insertion, selection sort are nested loops
§ Outer loop over each element to sort
§ Inner loop to put next element in place
§ Each loop is n steps. n×n = n2

• To do better we must eliminate a loop
§ But with what? Recursion!

• But to do this we have to back up a bit
§ Need to introduce an intermediate algorithm

The Problem Statement

• Given a list b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer
x ?

h k

Start: b

<= x x >= x
h i i+1 k

Goal: b

<= x x ? >= x
h i j k

In-Progress: b

Indices b, h important!
Might partition only part

Partition Algorithm

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

1 2 3 1 3 4 5 6 8b
h i k

or

• x is called the pivot value
§ x is not a program variable
§ denotes value initially in b[h]

x ?

h k

Start: b

<= x x >= x
h i i+1 k

Goal: b

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]

while i < j-1:
if b[i+1] >= x:

Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

partition(b,h,k), not partition(b[h:k+1])
Remember, slicing always copies the list!

We want to partition the original list

12/3/19 Sequences (Continued) 41

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]

while i < j-1:
if b[i+1] >= x:

Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

12/3/19 Sequences (Continued) 42

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]

while i < j-1:
if b[i+1] >= x:

Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

12/3/19 Sequences (Continued) 43

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]

while i < j-1:
if b[i+1] >= x:

Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

12/3/19 Sequences (Continued) 44

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]

while i < j-1:
if b[i+1] >= x:

Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

1 2 1 0 3 5 6 3 8
h i j k

12/3/19 Sequences (Continued) 45

Why is this Useful?

• Will use this algorithm to replace inner loop
§ The inner loop cost us n swaps every time

• Can this reduce the number of swaps?
§ Worst case is k-h swaps
§ This is n if partitioning the whole list
§ But less if only partitioning part

• Idea: Break up list and partition only part?
§ This is Divide-and-Conquer!

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

x ?

h k

Start: b

<= x x >= x
h i i+1 k

Goal: b

Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

Partition Recursively

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

x ?

h k

Start: b

<= x x >= x
h i i+1 k

Goal: b

Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

Partition Recursively

y ?

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

x ?

h k

Start: b

<= x x >= x
h i i+1 k

Goal: b

Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

Partition Recursively

y >= y<= y

QuickSort

def quick_sort(b, h, k):

"""Sort the array fragment b[h..k]"""

if b[h..k] has fewer than 2 elements:

return

j = partition(b, h, k)

b[h..j–1] <= b[j] <= b[j+1..k]

Sort b[h..j–1] and b[j+1..k]

quick_sort (b, h, j–1)

quick_sort (b, j+1, k)

• Worst Case:
array already sorted
§ Or almost sorted
§ n2 in that case

• Average Case:
array is scrambled
§ n log n in that case
§ Best sorting time!

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

So Does that Solve It?

• Worst case still seems bad! Still n2
§ Only happens in small number of cases
§ Just happens that case is common (already sorted)

• Can greatly reduce issue with randomization
§ Swap start with random element in list
§ Now pivot is random and already sorted unlikely

x ? y ?

h i k

Start: b

So Does that Solve It?

• Worst case still seems bad! Still n2
§ Only happens in small number of cases
§ Just happens that case is common (already sorted)

• Can greatly reduce issue with randomization
§ Swap start with random element in list
§ Now pivot is random and already sorted unlikely

x ? y ?

h i k

Start: b

Makes it “good enough”
for most applications

Can We Do Better?

• There is guaranteed n log n sorting algorithm
§ Called merge sort (beyond scope of course)
§ Used heavily in large databases
§ But it has high overhead (slower on small data)

• What does the sort() method use?
§ Uses Timsort (invented by Tim Peters in 2002)
§ Combination of insertion sort and merge sort
§ Insertion on small data, merge sort on large

Can We Do Better?

• There is guaranteed n log n sorting algorithm
§ Called merge sort (beyond scope of course)
§ Used heavily in large databases
§ But it has high overhead (slower on small data)

• What does the sort() method use?
§ Uses Timsort (invented by Tim Peters in 2002)
§ Combination of insertion sort and merge sort
§ Insertion on small data, merge sort on largeQuicksort is 1959!

