
GUI Applications

Module 27

A Standard GUI Application

Animates the
application,
like a movie

A Standard GUI Application

Animates the
application,
like a movie

Check for user input
Process user input
Update the objects

A Standard GUI Application

Update display/view
No change to objects

Animates the
application,
like a movie

Check for user input
Process user input
Update the objects

Restriction set by
graphics cards

Basic Application Loop

while program_is_running:
Get user input

Custom Application Code

Draw stuff on the screen

Do We Need to Write All This?

while program_is_running:
Get user input

Custom Application Code

Draw stuff on the screen

Code you must
write yourself.

Can we get this
handled for us?

Can we get this
handled for us?

Idea: Use a Class/Object

application = AppClass()
while application.isRunning():

application.getInput()

application.update()

application.drawToScreen()

Leverage Subclassing

application = AppClass()
while application.isRunning():

application.getInput()

application.update()

application.drawToScreen()

Inherited

Inherited

Overridden

Overridden

Programming Animation

Intra-Frame

• Computation within frame
§ Only need current frame

• Example: Collisions
§ Need current position
§ Use to check for overlap

• Can use local variables
§ All lost at update() end
§ But no longer need them

Programming Animation

Inter-Frame

• Computation across frames
§ Use values from last frame

• Example: Movement
§ Need old position/velocity
§ Compute next position

• Requires attributes
§ Attributes never deleted
§ Remain after update() ends

Previous
frame

Current
frame

Idea: Use a Class/Object

application = AppClass()
while application.isRunning():

application.getInput()

application.update()

application.drawToScreen()

Local variables erased.
But attributes persist.

Programming Animation

Intra-Frame

• Computation within frame
§ Only need current frame

• Example: Collisions
§ Need current position
§ Use to check for overlap

• Can use local variables
§ All lost at update() end
§ But no longer need them

Inter-Frame

• Computation across frames
§ Use values from last frame

• Example: Movement
§ Need old position/velocity
§ Compute next position

• Requires attributes
§ Attributes never deleted
§ Remain after update() ends

Attributes = Loop Variables

Normal Loops

x = 0
i = 2

while i <= 5:
x = x + i*i
i = i +1

Application

while app.isRunning():
app.getInput()
Your code called here
application.update()
app.drawToScreen()

Variables “external”
to the loop body

Attributes are the
“external” variables

The Actual Game Loop

Constructor
game = GameApp(…)
…
game.start() #Loop initialization
while game.isRunning():

Get input
Your code goes here
game.update(time_elapsed)
game.draw()

To early to initialize
everything

Actual loop
initialization

Separate update()
and draw() methods

Inherited

Designing a Game Class: Animation
class Animation(game2d.GameApp):

"""App to animate an ellipse in a circle."""

def start(self):
"""Initializes the game loop."""
…

def update(self,dt):
"""Changes the ellipse position."""
…

def draw(self):
"""Draws the ellipse"""
…

See animation.py

Designing a Game Class: Animation
class Animation(game2d.GameApp):

"""App to animate an ellipse in a circle."""

def start(self):
"""Initializes the game loop."""
…

def update(self,dt):
"""Changes the ellipse position."""
…

def draw(self):
"""Draws the ellipse"""
…

See animation.py
Parent class that
does hard stuff

Designing a Game Class: Animation
class Animation(game2d.GameApp):

"""App to animate an ellipse in a circle."""

def start(self):
"""Initializes the game loop."""
…

def update(self,dt):
"""Changes the ellipse position."""
…

def draw(self):
"""Draws the ellipse"""
…

See animation.py

Loop initialization
Do NOT use __init__

Loop body

Use method draw()
defined in GObject

Parent class that
does hard stuff

Drawing to The Screen

• All GameApp objects have a view attribute
§ Instance of GView (similar to Turtle Window)
§ Represents the window to draw to

• Create objects to draw
§ Subclasses of GObject
§ Special cases, GLabel, GImage, GSprite
§ All inherit a method draw(view)

• Just like our lessons on subclasses!

The GInput Class

• All GameApp objects have an input attribute
§ Contains input for current animation frame
§ Support for Keyboard and Mouse (Touch)

• Class GInput defines attributes, methods
§ is_key_down(key): Returns True if key held
§ is_touch_down(): Returns True if mouse pressed
§ keys: List of all keys currently pressed
§ touch: Point2 of (pressed) mouse screen location

The GInput Class

• All GameApp objects have an input attribute
§ Contains input for current animation frame
§ Support for Keyboard and Mouse (Touch)

• Class GInput defines attributes, methods
§ is_key_down(key): Returns True if key held
§ is_touch_down(): Returns True if mouse pressed
§ keys: List of all keys currently pressed
§ touch: Point2 of (pressed) mouse screen location

Simple Example:
Pausing animation

Recall: Programming Animation

Inter-Frame

• Computation across frames
§ Use values from last frame

• Example: Movement
§ Need old position/velocity
§ Compute next position

• Requires attributes
§ Attributes never deleted
§ Remain after update() ends

Previous
frame

Current
frame

Inter-Frame Comparisons

• Attribute touch in GInput
§ The mouse press position
§ Or None if not pressed
§ Access with self.input.touch

• Compare touch, last position
§ Mouse button pressed:

last None, touch not None
§ Mouse button released:

last not None, touch None
§ Mouse dragged:

last and touch not None
See touch.py

Previous
Touch

Current
Touch

Line segment = 2 points

State: Changing What the Loop Does

• State: Current loop activity
§ Playing game vs. pausing
§ Ball countdown vs. serve

• Add an attribute state
§ Method update() checks state
§ Executes correct helper

• How do we store state?
§ State is an enumeration;

one of several fixed values
§ Implemented as an int

See state.py

State ANIMATE_CIRCLE

State ANIMATE_HORIZONTAL

Designing States

• Each state has its own set of invariants.
§ Drawing? Then touch and last are not None
§ Erasing? Then touch is None, but last is not
§ Erasing? Then touch and last are both None

• Need to make clear in class specification
§ What are the application states?
§ What are the invariants for each state?
§ What are the rules to switch to a new state?

State Triggers

• Need a rule for switching between states
§ Look for some event to happen, and change state
§ Example: press space to change state in state.py
§ Example: double clicking to erase in touch.py

• Complex apps also limit state transitions
§ ANIMATE_CIRCLE => ANIMATE_HORIZONTAL OK!
§ ANIMATE_HORIZONTAL => ANIMATE_CIRCLE BAD!

• Again, make clear in specification

Example: Checking Click Types

• Double click = 2 fast clicks
• Count number of fast clicks

§ Add an attribute clicks
§ Reset to 0 if not fast enough

• Time click speed
§ Add an attribute time
§ Set to 0 when mouse released
§ Increment when not pressed

(e.g. in loop method update())
§ Check time when next pressed

See touch.py

time

pressed

released pressed

released

Is it fast enough?

Designing Complex Applications

• Applications can become
extremely complex
§ Large classes doing a lot
§ Many states & invariants
§ Specification unreadable

• Idea: Break application
up into several classes
§ Start with a “main” class
§ Other classes have roles
§ Main class delegates work

MainApp

Animation

See subcontroller.py

§ Processes input
§ Determines state

§ Animates (only)

Calls the methods of

• Pattern: reusable solution to a common problem
§ Template, not a single program
§ Tells you how to design your code
§ Made by someone who ran into problem first

• In many cases, a pattern gives you the interface
§ List of headers for non-hidden methods
§ Specification for non-hidden methods
§ Only thing missing is the implementation

How to Break Up: Software Patterns

Just like
this course!

Model
• Defines and

manages the data
• Responds to the

controller get/set

View
• Displays the model

to the app user
• Provides user input

to the controller

Controller
• Updates model in

response to events
• Updates view with

model changes

Model-View-Controller Pattern

Calls the
methods or
functions of

Division
can apply
to classes
or modules

MVC in this Course

Model

• A3: Color classes
§ RGB, CMYK & HSV

• A4: Turtle, Pen
§ Window is View

• A7: Frog, Car, etc..
§ All shapes/geometry

Controller

• A3: a3app.py
§ Hidden classes

• A4: Funcs in a4.py
§ No need for classes

• A7: Froggit, Level
§ The actual assignment!

MVC in this Course

Model

• A3: Color classes
§ RGB, CMYK & HSV

• A4: Turtle, Pen
§ Window is View

• A7: Frog, Car, etc..
§ All shapes/geometry

Controller

• A3: a3app.py
§ Hidden classes

• A4: Funcs in a4.py
§ No need for classes

• A7: Froggit, Level
§ The actual assignment!

Why classes sometimes
and functions others?

Model
Subclasses of GObject
• GEllipse, GImage, …
• Often more than one

View
Class GView, GInput
• Do not subclass!
• Part of GameApp

Controller
Subclass of
GameApp

Model-View-Controller in CS 1110

Classes in
game2d

Method draw
in GObject

Attribute view
(inherited)

Other attributes
(defined by you)

Model
Subclasses of GObject
• GEllipse, GImage, …
• Often more than one

View
Class GView, GInput
• Do not subclass!
• Part of GameApp

Controller
Subclass of
GameApp

Model-View-Controller in CS 1110

Classes in
game2d

Method draw
in GObject

Attribute view
(inherited)

Other attributes
(defined by you)

Neglected for most

of this lesson

Models in Assignment 7

• Often subclass of GObject
§ Has built-in draw method

• Includes groups of models
§ Example: rockets in pyro.py
§ Each rocket is a model
§ But so is the entire list!
§ update() will change both

• A7: Several model classes
§ Frog to animate the player
§ Car to represent a vehicle See pyro.py

rocket

sparks

