Lecture 27

Generators

Announcements for This Lecture

Prelim 2

Other Announcements

 Thurs, Dec 5 at 7:30

= See webpage for rooms
= Review Wed Dec. at Spm
= Review in Phillips 101

* Material up to Nov. 12
= Recursion + Loops + Classes

= No short answer!

 Make-Ups are Notified
= Contact Amy (ahf42)

12/3/24

A7 due Mon, Dec. 9 (11th)
= Extensions are possible
= Work on it during Thur/Fr1
* Final, Dec 14t 2-4:30 pm
= Study guide is posted Thurs
= Also will post conflict form
* Submit a course evaluation
= Will get an e-mail for this

= Part of the “participation
grade” (e.g. polling grade)

Generators 2

Recall: The Range Iterable

range(x)

Example

* Creates an iferable
* Can be used 1n a for-loop
= Makes ints (0, 1, ... x-1)
* But 1t 1s not a tuple!

= A black-box for numbers
* Entirely used in for-loop

= Contents of folder hidden

>>> range(d)

range(0,3)

>>> for X in range(3)
print(x)

3

12/3/24 Generators

Recall: The Range Iterable

range(x) Example
 Creates an iterable >>> range(3)
= Canbev N

BUECE [terable: Anything that EEX

ARt can be used 1n a for-loop
= A black-

* Entirely used in for-loop 1

= Contents of folder hidden P

12/3/24 Generators

Iterators: Iterables Outside of For-Loops

* Iterators can manually extract elements
= (et each element with the next() function

= Keep going until you reach the end
= Ends with a Stoplteration (Why?)

e (Can create iterators with iter() function
>>> g = iter([1,5,3])

>>> next(a)
1 Must be a }
S>> next(a) iterable

5

12/3/24 Generators

Iterators Can Be Used in For-Loops

>>> g = iter([1,2])

>>> for X in a: Technically, iterators
print(x) are also iterable

1

r

>>> for X in a: But they are

. Print(x) one-use only!

>>>

12/3/24 Generators

Motivation for Iterables

 Large lists are a problem id1
= Use a lot of space in heap list
= Ex: list(range(10000000)) 0] 0
 But do we need all this? VR
= for-loop gets just one elt. 10000002) .1(.)000000

* Only need the next value

* This 1s how range works VS id2
= Stores the next value range
= Generates this on demand next | 9975653

= More space efficient

12/3/24 Generators

Iterators are Classes

class rangeliter(object):

""Tterator class for squares of a range"""
Attribute _limit: end of range

Attribute _pos: current spot of iterator

def _ next__ (self):

"""Returns the next element"""
if self._pos >= self._limit:
raise Stoplteration()

else:

value = self._pos*self._pos
self._pos +=1

return value

12/3/24 Generators

Iterators are Classes

class rangeliter(object):

""Tterator class for squares of a range"""

Attribute limit: end of range

Attribute pos: current s| Defines the

next() fcn

def _ next__ (self):
"""Returns the next element"""
if self._pos >= self._limit:
raise Stoplteration()

else:

value = self._pos*self._pos
self._pos +=1

return value

12/3/24 Generators

Iterators are Classes

class rangeliter(object):

""Tterator class for squares of a rangeLE How far to go }

Attribute _limit: end of range
Attribute _pos: current spot of iterator ﬁ

How far we are }

def __next_ (self):
""Returns the next element"""
if self._pos >= self._limit:

raise Stoplteration .

else: P O Raise error when
value = self._pos*self._pos gone too far
self._pos +=1
return value

12/3/24 Generators 10

Iterators are Classes

class rangediter(object):

""Tterator class for squares of a range"""
Attribute _limit: end of range

Attribute _pos: current spot of iterator

def __next_ (self):

"""Returns the next element""" Update “IOOp” after

if self._pos >= self._limit: doing computation
raise Stoplteration()

else:

value = self._pos*self._pos

sell._pos += 1 Essentially a
return value :
loop variable

12/3/24 Generators

11

Iterables are Also Classes

class ranged(object):
"""Tterable class for squares of a range""

def _init_ (self,n):
"""Initializes a squares iterable"™
self,_limit =n

Z{ Defines the }
def __iter__(self): iter() function

""Returns a new iterator"""
return rangeliter(self._limit)

ﬁ Returns an iterator]

12/3/24

12

Iterables are Also Classes

class ranged(object):
"""Tterable class for squares of a range""

def __init__(self,n): Iterables are objects
""Initializes a squares iter that generate

self._limit = n iterators on demand

def _ iter (self):
""Returns a new iterator""
return rangeliter(self._limit)

12/3/24 Generators

13

Iterators are Hard to Write!

» Has the same problem as GUI applications
= We have a hidden loop
= All loop variables are now attributes

= Similar to inter-frame/intra-frame reasoning

* Would be easier 1f loop were not hidden
* Idea: Write this as a function definition
* Function makes loop/loop variables visible
» But iterators “return” multiple values

= So how would this work?

12/3/24 Generators

14

The Wrong Way

def rangeliter(n):

Iterator for the squares of numbers O to n-1

Precondition: n is an int >= 0

for x in range(n):

return x*x Stops at the
first value

12/3/24 Generators

15

The yield Statement

* Format: yield <expression>
= Used to produce a value
= But 1t does not stop the “function”
= Useful for making iterators
* But: These are not normal functions

" Presence of a yield makes a generator

= Function that returns an iterator

12/3/24 Generators 16

The Generator approach

def rangeliter(n):

Generator for the squares
of numbers O to n-1

Precon: nisanint>=0

for x in range(n):

yield x*x

>>> g, = rangeliter(3)
>>> 9,

Essentially

<generator
a constructor

|

>>> next(a)
0
>>> next(a)
1
>>> next(a)
4

12/3/24 Generators

17

What Happens on a Function Call?

Visualize | | Execute Code | | Edit Code Heap primitives Use a

Creates
def range2iter(n): “q a generator

"""Generator for a range of squares""" global “Function
for x in ran n):) ge2iter(n)
© . ange(n) range2iter |id1
yield x*x 0)
a || id2: t
print('Ended loop for '+str(x)) o-generaror
rangeziter(3)
Frames

a = range2iter(3)

—) X = next(a)
y = next(a)
z = next(a)
" = next(a) No call

frame

<<First <Back Step 3 of 20 Forward > Last >>

line that has just executed
== next line to execute

12/3/24 Generators

next() Initiates a Function Call

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows

. Globals Objects
def range2iter(n):)

"""Generator for a range of squares""" global id1:function

- for x.1'n range(n):
yield xx Comes from
e Or1ginal call

range2iter |id1

N

id
print('Ended loop for '+str(x)) 2L

a = range2iter(3)

range2iter

X = next(a)
y = next(a) n |3
z = next(a)
w = next(a)
0 Frame for

<<First <Back Step 4 of 20 Forward > Last >>

next()

line that has just executed
== next line to execute

12/3/24 Generators 19

Call Finishes at the yield

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows
def range2iter(n): Globals
"""Generator for a range of squares""" global
for x in range(n):

leld x* rangeiter |idl
yield x*x

= a |id2
print('Ended loop for '+str(x))

a = range2iter(3) Frames

rangeiter

X = next(a)

y = next(a) n |3

Zz = next(a) x (0

w = next(a) e
value

<< First <Back Step 6 of 20 Forward > Last >>

Objects

id1:function
range2iter(n)

id2:generator

rangeziter(3)

yield is return

== next line to execute

for next()

12/3/24 Generators

20

Later Calls Resume After the yield

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows
Global Object
def range2iter(n): opars jects
"""Generator for a range of squares""" global id1:function
i . range2iter(n
for x-1n range(n): range2iter |id1 g (n)
yield x*x id2 &
I id2: t
— print('Ended loop for '+str(x)) @ e
x |0 rangeziter(3)
a = rangeliter(3)
Frames
x = next(a)) FI'OIII laSt
rangeiter
y = next(a) .
z = next(a) n (3 tlme
w = next(a) x |0

<< First <Back Step 8 of 20 Forward > Last >>

Next call returns

== next line to execute

to where 1t left off

12/3/24 Generators 21

Exception is Made Automatically

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows
. Globals Objects
def range2iter(n):
"""Generator for a range of squares""" global id1:function
i . range2iter(n)
for x in range(n): range2iter |id1 &
yield x*x 0
print('Ended loop for '+str(x)) X
y 1
a = rangeiter(3) z |4
X = next(a) Frames
y = next(a)
z = next(a)
w— W = next(a)

<<First <Back Program terminated

Stoplteration: EXCeptiOH When

generator 1s done

12/3/24 Generators

Return Statements Make Exceptions

Visualize | | Execute Code | | Edit Code Heap primitives Use arrows
def range2iter(n): Globals Objects
"""Generator for a range of squares""" global id1:function
for x in range(n): range2iter |id1 range2iter(n)
yield x*x ;
print('Ended loop for '+str(x)) X
return x # The final x y |1
z 4
a = rangeliter(3)
Frames
X = next(a)
y = next(a)
z = next(a)
w—) w = next(a)
<< First <Back Program terminated EXC eption When
Stoplteration: 2 t R d
Return Value
12/3/24 rators 23

Activity: Call Frame Time

Function Defintions Function Call

def rnginv(n): #Inverse range >>> X = harmonic(R)
19 | for x in range(1,n): Assume we are here:
20 ‘ yield 1/x

harmonic | n| 2 34

def harmonic(n): #Harmonic sum
2 | sum=0 sum| O | g|id3
33 | g=rnginv(n)
34 forxing: Ignoring the heap,
35| | sum = sum+x what is the next step?
36| return x

12/3/24 Generators 24

Which One is Closest to Your Answer?

A |harmonic | n| 2 34 B: |harmonic | n| 2 34
sum| O id3 sum| O id3
rnginv nl 2 19 rnginv nl 2 20
x| 1
C: |harmonic | n| 2 34 D: |harmonic | n| 2 34
sum| O id3 1 sum| O id3
rnginv n 2 20
x| 1 YIELD | 1

12/3/24

Generators

25

Which One is Closest to Your Answer?

A |harmonic | n| 2 34 B: |harmonic | n| 2 34
sum| 0 | g|id3 sum| 0 | g|id3

rnginv E: n 2 20

\ \y /

C: | harmonic _()_ ‘ n| 2 34
sum| O | 8 S| id3

rnginv n 2 20

x| 1 YIELD | 1

12/3/24

Generators

26

Activity: Call Frame Time

Function Defintions

Function Call

19

def rnginv(n):

for x in range(1,n): A:

20 ‘ yield 1/x

32
33
34
35
36

def harmonic(n):
sum =0

g = rnginv(n)
for x in &:

‘ SUm = SUM+X
return x

12/3/24

#Inverse range >>> X = harmonic(R)

#Harmonic sum

harmonic | n| 2 34
sum| O id3
rnginv n 2 19

[What 1s the next step? J

Generators

27

Which One is Closest to Your Answer?

A: |harmonic | n| 2 34 B: |harmonic | n| 2 34
sum| O id3| x| 1 sum| O id3
rnginv n 2 20
x| 1
C: |harmonic | n| 2 34 D: |harmonic | n| 2 34
sum| O id3 sum| O id3
rnginv nl 2 20 rnginv nl 2 21
x| 1 YIELD | 1 x| 1 YIELD | 1

12/3/24

Generators

28

Activity: Call Frame Time

Function Defintions

Function Call

19

def rnginv(n):

for x in range(1,n): B:

20 ‘ yield 1/x

32
33
34
35
36

def harmonic(n):
sum =0

g = rnginv(n)
for x in &:

‘ SUm = SUM+X
return x

12/3/24

#Inverse range >>> X = harmonic(R)

#Harmonic sum

harmonic | n| 2 34
sum| O id3

rnginv n 2 20
x| 1

[What 1s the next step? J

Generators

29

Which One is Closest to Your Answer?

A: |harmonic | n| 2 34 B: |harmonic | n| 2 34
sum| O id3| x| 1 sum| 0 | g|id3 | x| 1
rnginv n 2 19
x| 1 YIELD | 1
C: |harmonic | n| 2 34 D: |harmonic | n| 2 34
sum| O id3 sum| O | g|id3
rnginv nl 2 rnginv nl 2
x| 1 YIELD | 1 x| 1 | RETURN | 1

12/3/24

Generators

30

Activity: Call Frame Time

Function Defintions

Function Call

19

def rnginv(n):

for x in range(1,n): D:

20 | yleld 1/x

32
33
34
35
36

def harmonic(n):
sum =0

g = rnginv(n)
for x in &:

‘ SUm = SUM+X
return x

12/3/24

#Inverse range >>> X = harmonic(R)

#Harmonic sum

harmonic | n| 2 34
sum| O | g|id3
rnginv nl 2

x| 1 | RETURN | 1

Generators

31

Generators Are Easy

* They replace the accumulator pattern
* Function input 1s an iterable (string, list, tuple)
= Function output typically a transformed copy
" Old way: Accumulate a new list or tuple

* New way: Yield one element at a time

« New way makes an iterator (not iterable)
= So can only be used once!

= But easily turned into a list or tuple

12/3/24 Generators

32

Accumulators: The Old Way

def add_one(Ist):
"""Returns copy with 1 added to every element

Precond: Ist is a list of all numbers"""
copy =[] # accumulator

for x in Ist:

X=X+l

copy.append(x)

return copy

12/3/24 Generators

33

Generators: The New Way

def add_one(input)
"""Generates 1 added to each element of input

Precond: input is a iterable of all numbers™"

for x in input 2 —— }
Simpler!
yield x +1

yield eliminates
the accumlator

12/3/24 Generators

34

Accumulators: The Old Way

def evens(lst):
"""Returns a copy with even elements only

Precond: Ist is a list of all numbers"""
copy =[] # accumulator

for x in Ist:

ifx%2==0:

’ copy.append(x)

return copy

12/3/24 Generators

35

Generators: The New Way

def evens(input):
""(Generates only the even elements of input

Precond: input is a iterable of all numbers"""

for x in input:
ifx% 2 ==0:
yield x

12/3/24 Generators

36

Accumulators: The Old Way

def average(lst):
"""Returns a running average of Ist (elt n is average of 1st[0:n])

Ex: average([l, 3, 8, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: 1st is a list of all numbers"""
result =[] # actual accumulator
sum = 0; count =0 # accumulator “helpers”
for x in 1st:
sum = sum+x; count = count+1
result.append(sum/count)

return result

12/3/24 Generators

37

Accumulators: The Old Way

def average(lst):
"""Returns a running average of Ist (elt n is average of Ist[O:n])

Ex: average([l, 3, 8, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: 1st is a list of all numbers"""

result = [] .
sum = 0: count = 0 Allows multiple
for x in lst: assignments per line

sum = sum+x;‘count = count+1
result.append(sum/count)

return result

12/3/24 Generators 38

Generators: The New Way

def average(input):
"""Generates a running average of input

Ex: input 1, 3, 5, 7 yields 1.0, 2.0, 3.0, 4.0

Precond: input is a iterable of all numbers"""
sum =0 # accumulator “helper”

count =0 # accumulator “helper”

for x in Ist:

sum = sum-+x

count = count+1

yield sum/count

12/3/24 Generators

39

Chaining Generators

* Generators can be chained together
= Take an 1terator/iterable as imnput
* Produce an iterator as output

= Output of one generator = input of another

* Powerful programming technique

input W) >) ENIEGEE =) output

12/3/24 Generators 40

Simple Chaining

i cyens WSS averade [add_one RSN

>>> g =[], R, 3, 4] # Start w/ any iterable
>>> b = add_one(average(evens(a))) # Apply right to left
>>> ¢ = list(b) # Convert to list/tuple
>>> 0

[3.0, 4.0]

12/3/24 Generators 41

Simple Chaining

i cyens WSS averade [add_one RSN

SRR Natural way to process ENSteIE

>>> b = add, data streams 1t to left
>>> ¢ = list(b) # Convert to list/tuple
>>> 0

[3.0, 4.0]

12/3/24 Generators 42

Why Do We Care?

 Stream programming is an advanced topic
* Involves chaining together many generators
= Will see this again 1f go on to 3110

* But we have an application in A7!
= Remember that GUIs are like iterator classes
= Game app runs with an “invisible” loop
= All loop variables implemented as attributes

= Generators are a way to simplify all this

12/3/24 Generators

43

Why Do We Care?

 Stream programming is an advanced topic
* Involves chaining together many generators
= Will see this again 1f go on to 3110

* But we have an application in A7!

= Remember that GUIs are like iterator classes

= Game

" Allloc out of scope

= Generauuu ULV O VY Oy U DLIIIIJILLy Gl virt O

Unfortunately

utes

12/3/24 Generators

44

