Iterators: Iterables Outside of For-Loops

12/1/24

o Iterators can manually extract elements
= Get each element with the next() function
= Keep going until you reach the end
= Ends with a StopIteration (Why?)

¢ Can create iterators with iter() function
>>> g = iter([1,5,3])
>>> next(a)
1
>>> next(a)
5

Must be a

iterable

Motivation for Iterables

 Large lists are a problem id1
= Use a lot of space in heap
= Ex: list(range(10000000)) ofo]
» But do we need all this? ;
= for-loop gets just one elt. 10000000
= Only need the next value
* This is how range works id2
= Stores the next value VS
= Generates this on demand next

= More space efficient

Iterators are Classes

class rangeRiter(object):

""Iterator class for squares of a range
Attribute _limit: end of range

Attribute _pos: current spot of iterator

def _ next_ (self):
""Returns the next element""
if self._pos >= self._limit:
raise StopIteration()
else:
value = self._pos*self._pos
self._pos +=1
return value

Raise error when
gone too far

Iterables are Also Classes

class range2(object):
"""Tterable class for squares of a range""

def __init_ (self,n):
"""Initializes a squares iterable""

self._limit =n
Defines the
iter() functi
def __iter_ (self): O function

"""Returns a new iterator""

return rangeliter(self. limit
Returns an iterable

Iterators are Hard to Write!

 Has the same problem as GUI applications
= We have a hidden loop
= All loop variables are now attributes
= Similar to inter-frame/intra-frame reasoning
* Would be easier if loop were not hidden
= Idea: Write this as a function definition
= Function makes loop/loop variables visible
* But iterators “return” multiple values
= So how would this work?

The yield Statement

* Format: yield <expression>
= Used to produce a value
= But it does not stop the “function”
= Useful for making iterators
* But: These are not normal functions

= Presence of a yield makes a generator

= Function that returns an iterator

12/1/24

The Generator approach

def rangegiter(n): >>> a = rangeiter(3)
mm >>> g,
Generator for the squares <generator lefei L
a constructor
of numbers 0 to n-1 >>> next(a)
0

Precon: nis an int >=0 >>> next(a)
nin 1
for x in range(n): >>> next(a)

yield x*x 4

What Happens on a Function Call?

Visualize ~Execute Code Edit Code Heap primitives Use a

Creates
a generator

Funetion

def range2iter(n) Globg

“*"Generator for a range of squares""" slobal
for x in range(n):
yield x*x a |2

print('Ended loop for '+str(x)) -

a = range2iter(3) Frames

range2iter |id1

= 9 x = next(a)
y = next(a)
z = next(a)

W = next(a) NO call
frame

<cFist <Back Step30f20 Foward> Last>>

Generators Are Easy

* They replace the accumulator pattern
= Function input is an iterable (string, list, tuple)
= Function output typically a transformed copy
= Old way: Accumulate a new list or tuple
= New way: Yield one element at a time

» New way makes an iterator (not iterable)
= So can only be used once!

= But easily turned into a list or tuple

10

Generators: The New Way

def add_one(input)
""Generates 1 added to each element of input

Precond: input is a iterable of all numbers""

for x in input

yield x +1

yield eliminates

the accumlator

7
next() Initiates a Function Call
Visualize = Execute Code Edit Code Heap primitives Use arrows
def range2iter(n): Globals Objects
"""Generator for a range of squares""" global 1 tunction
- for x‘ln ral;\:e(n): rangeziter [id1
::\::(‘Endeﬂ Toop for '+str(x)) a |2 Co'n}es from

a = rangeziter(e Original call

y = next(a) n 3

z = next(a)

w = next(a)

e Frame for
nextQ)
9
Accumulators: The Old Way
def add_one(lst):
"""Returns copy with 1 added to every element
Precond: Ist is a list of all numbers""
copy =[] # accumulator
for x in Ist:
X=x+1
copy.append(x)
return copy

11

12

