11/17/24

Linear Search Binary Search

def linear_search(v,b): def binary_search(v,b):

""Returns: first occurrence of v in b (-1 if not found) # Loop variable(s)

Precond: b a list of number, v a number i=0,j=len(b)

""“ while i <j and bi] = v:
Requires that the

Loop variable How many entries do mid = (i+])//2
=0 we have to look at? if blmid] <v: data is sorted!
while 1 < len(b) and bli] 1= v: | j=mid

=il lif b[mid] > v:
if i ==len(b): # not found _ All of them! | i=mid But few checks!
else:

‘ return -1
return i ‘ return mid
return -1 # not found

2
The Sorting Challenge Horizontal Notation
* Given: A list of numbers * Want a pictoral way to visualize this sorting
+ Goal: Sort those numbers using only * Represent the list as long rectangle
= Jteration (while-loops or for-loops) = We saw this idea in divide-and-conquer
= Comparisons (< or >) b ‘0 ‘h ‘k
= Assignment statements
o h htl
« Why? For proper analysis. * Do not show individual boxes
= Just dividing lines between regions
(h+1)—h=1

= Methods/functions come with hidden costs
= Label dividing lines with indices

= Everything above has no hidden costs
= Each comparison or assignment is “1 step” = But index is either left or right of dividing line

3 4
Visualizing Sorting Insertion Sort
0 i n
b ‘ sorted ?
0 n i= 0
Starts b | ’ while i < n: 0 i
Push b[i] down into its
0 N # sorted position in b[0..i] 0 i
Goal: b ‘ sorted a
2445667
e 2aaseds]
0 i n
In-Progress: b ‘ sorted ? ..
Remember the restrictions!
6

Insertion Sort: Moving into Position

i=0 .
0 i
et <
push_down(b,i)
| i=i+l 0 i
def push_down(b, i): A
| s — 3 .
J=1 0 i
W0
‘ if b[j-1] > bjl: lecture about lists)
| swapoy1) 0 i
s 2445667
R 2aasedr]

11/17/24

Insertion Sort: Performance

def push_down(b, i):
""Push value at position i into
sorted position in b[0..i-1]""

e b[0..i-1]: i elements
» Worst case:
= i=0: 0 swaps

j='i) = i=1:1swap
while j > 0: = {=2:2 swaps
if b[j-1] > b[j:

* Pushdown is in a loop
swap(b,j-1,
‘ p(FLD = Called foriin 0..n

j=j1 - :
4= Insertion sortis | = i swaps each time
an n? algorithm

[Total Swaps: 0+ 1 +2+3 +... (n-1) = (n-1)*n/2 = (n>) 2 |

Algorithm “Complexity”

» Given: a list of length n and a problem to solve
* Complexity: rough number of steps to solve worst case
» Suppose we can compute 1000 operations a second:

Complexity n=1000

logn 0.003 s 0.006 s 0.01s
n 0.01s 0.1s ls
nlogn 0.016 s 0.32s 479s
n? 0.1s 10s 16.7 m
n3 Is 16.7m 11.6d
20 ls 4x1019y 3x1020y

9
Selection Sort

i n

b [sorted,<bli.] | >b[0.i-1] |
i n
=0 [24466[899789]
while i <n: i n
Find minimum in b[i..] [24466]7998809]

Move it to position i i

1 n
244667[99889]

Remember the restrictions!

i=i+l

8
A New Algorthm
0 n
Start: b ‘ 9 ‘
0 n
Goal: b ‘ sorted ‘
0 i n
In-Progress: b ‘ sorted, < b[i..] ‘ >b[0..i-1] ‘
First segment always
contains smaller values
10

What is the Problem?

* Both insertion, selection sort are nested loops
= Quter loop over each element to sort
= Inner loop to put next element in place
= Each loop is n steps. nXn =n?
* To do better we must e/iminate a loop
= But how do we do that?
= What is like a loop? Recursion!

= Will see how to do this next lecture

11

12

