
11/11/24

1

A Standard GUI Application

Update display/view
No change to objects

Animates the
application,
like a movie

Check for user input
Process user input
Update the objects

Restriction set by
graphics cards

1

Must We Write this Loop Each Time?

while program_is_running:
 # Get information from mouse/keyboard
 # Handled by OS/GUI libraries

 # Your code goes here
 application.update()

 # Draw stuff on the screen
 # Handled by OS/GUI libraries

Custom Application class
with its own attributes

Method call
(for loop body) • Write loop body

 in an app class.
• OS/GUI handles
 everything else.

2

Programming Animation

Intra-Frame

• Computation within frame
§ Only need current frame

• Example: Collisions
§ Need current position
§ Use to check for overlap

• Can use local variables
§ All lost at update() end
§ But no longer need them

Inter-Frame

• Computation across frames
§ Use values from last frame

• Example: Movement
§ Need old position/velocity
§ Compute next position

• Requires attributes
§ Attributes never deleted
§ Remain after update() ends

3

Designing a Game Class: Animation
class Animation(game2d.GameApp):
 """App to animate an ellipse in a circle."""

 def start(self):
 """Initializes the game loop."""
 …

 def update(self,dt):
 """Changes the ellipse position."""
 …

 def draw(self):
 """Draws the ellipse"""
 …

See animation.py

Loop initialization
Do NOT use __init__

Loop body

Use method draw()
defined in GObject

Parent class that
does hard stuff

4

Interframe Computation: Touch

• Works like an Etch-a-Sketch
§ User draws by touching
§ Checks position each frame
§ Draws lines between touches

• Uses attribute touch in GInput
§ The mouse press position
§ Or None if not pressed
§ Access with self.input.touch

• But we also need last touch!
§ Forgot if we do not store it
§ Purpose of attribute last

See touch.py

Previous
Touch

Current
Touch

Line segment = 2 points

5

State: Changing What the Loop Does

• State: Current loop activity
§ Playing game vs. pausing
§ Ball countdown vs. serve

• Add an attribute state
§ Method update() checks state
§ Executes correct helper

• How do we store state?
§ State is an enumeration;

one of several fixed values
§ Implemented as an int
§ Global constants are values

See state.py

State ANIMATE_CIRCLE

State ANIMATE_HORIZONTAL

6

11/11/24

2

States and the Class Invariant

• Think of each state as a mini-program
§ Has its own update functionality/logic
§ Usually separated out as helper to update
§ update uses ifs to send to correct helper

• Need to include in the class invariant
§ Some attributes only used in certain states
§ What values must they have in other states?

• Also need rules for when we switch states
§ Could be the result of an event (e.g. game over)
§ Could be the result of an input (e.g. a key press)

See state.py

7

Checking Input

Keyboard

• is_key_down(key)
§ Returns True if key is down
§ key is a string ('a' or 'space')
§ Empty string means any key

• is_key_pressed(key)
§ Returns True if key pressed
§ key not down prev. frame

• is_key_released(key)
§ Returns True if key released
§ key was down prev. frame

Mouse/Touch

• touch
§ Attribute giving a position
§ Stored as a Point2 object
§ But None if no touch

• is_touch_pressed()
§ True if touch pressed
§ touch was None prev. frame

• is_touch_released()
§ True if touch released
§ touch not None prev. frame

8

Complex Input: Click Types

• Double click = 2 fast clicks
• Count number of fast clicks

§ Add an attribute clicks
§ Reset to 0 if not fast enough

• Time click speed
§ Add an attribute time
§ Set to 0 when mouse released
§ Increment when not pressed

(e.g. in loop method update())
§ Check time when next pressed

See touch.py

time

pressed

released pressed

released

Is it fast enough?

9

Designing Complex Applications

• Applications can become
extremely complex
§ Large classes doing a lot
§ Many states & invariants
§ Specification unreadable

• Idea: Break application
up into several classes
§ Start with a “main” class
§ Other classes have roles
§ Main class delegates work

MainApp

Animation

See subcontroller.py

§ Processes input
§ Determines state

§ Animates (only)

Calls the methods of

10

Model
• Defines and

manages the data
• Responds to the

controller requests

View
• Displays the model
 to the app user
• Provides user input

to the controller

Controller
• Updates model in

response to events
• Updates view with

model changes

Model-View-Controller Pattern

Calls the
methods or
functions of

Division
can apply
to classes

or modules

11

Models in Assignment 7

• Often subclass of GObject
§ Has built-in draw method

• Includes groups of models
§ Example: rockets in pyro.py
§ Each rocket is a model
§ But so is the entire list!
§ update() will change both

• A7: Several model classes
§ Ship to animate the player
§ Alien to represent an alien

See pyro.py

rocket

sparks

12

