
Operators and
Abstraction

Lecture 21

Announcements for Today

Assignments Video Lessons

• Videos 23.1-23.7 for today
• Skip to Lesson 25 for Tues
• Lessons 26 for next Thurs

11/7/24 Operators and Abstraction 2

• A4 still being graded
§ Today is last day for survey!

• A5 is due TODAY
§ Shorter written assignment
§ Will grade it next week

• A6 due Fri, November 15
§ Designed to take awhile
§ Follow the micro-deadlines
§ Should be on Task 2 soon

Case Study: Fractions

• Want to add a new type
§ Values are fractions: ½, ¾
§ Operations are standard

multiply, divide, etc.
§ Example: ½*¾ = ⅜

• Can do this with a class
§ Values are fraction objects
§ Operations are methods

• Example: frac1.py

class Fraction(object):
 """Instance is a fraction n/d"""
 # INSTANCE ATTRIBUTES:
 # _numerator: an int
 # _denominator: an int > 0

 def __init__(self,n=0,d=1):
 """Init: makes a Fraction"""
 self._numerator = n
 self._denominator = d

11/7/24 Operators and Abstraction 3

Case Study: Fractions

• Want to add a new type
§ Values are fractions: ½, ¾
§ Operations are standard

multiply, divide, etc.
§ Example: ½*¾ = ⅜

• Can do this with a class
§ Values are fraction objects
§ Operations are methods

• Example: frac1.py

class Fraction(object):
 """Instance is a fraction n/d"""
 # INSTANCE ATTRIBUTES:
 # _numerator: an int
 # _denominator: an int > 0

 def __init__(self,n=0,d=1):
 """Init: makes a Fraction"""
 self._numerator = n
 self._denominator = d

11/7/24 Operators and Abstraction 4

Reminder: Hide
attributes, use
getters/setters

Problem: Doing Math is Unwieldy

What We Want

1
2
+
1
3
+
1
4
∗
5
4

What We Get

>>> p = Fraction(1,2)
>>> q = Fraction(1,3)
>>> r = Fraction(1,4)
>>> s = Fraction(5,4)
>>> (p.add(q.add(r))).mult(s)

11/7/24 Operators and Abstraction 5

This is confusing!

Problem: Doing Math is Unwieldy

What We Want

1
2
+
1
3
+
1
4
∗
5
4

What We Get

>>> p = Fraction(1,2)
>>> q = Fraction(1,3)
>>> r = Fraction(1,4)
>>> s = Fraction(5,4)
>>> (p.add(q.add(r))).mult(s)

11/7/24 Operators and Abstraction 6

This is confusing!

Why not use the
standard Python
math operations?

Special Methods in Python

• Have seen three so far
§ __init__ for initializer
§ __str__ for str()
§ __repr__ for repr()

• Start/end with 2 underscores
§ This is standard in Python
§ Used in all special methods
§ Also for special attributes

• We can overload operators
§ Give new meaning to +, *, -

class Point3(object):
 """Instances are points in 3D space"""
 …

 def __init__(self,x=0,y=0,z=0):
 """Initializer: makes new Point3"""
 …

 def __str__(self,q):
 """Returns: string with contents""”
 …

 def __repr__(self,q):
 """Returns: unambiguous string""”
 …

11/7/24 Operators and Abstraction 7

Operator Overloading

• Many operators in Python a special symbols
§ +, -, /, *, ** for mathematics
§ ==, !=, <, > for comparisons

• The meaning of these symbols depends on type
§ 1 + 2 vs 'Hello' + 'World'
§ 1 < 2 vs 'Hello' < 'World'

• Our new type might want to use these symbols
§ We overload them to support our new type

11/7/24 Operators and Abstraction 8

Returning to Fractions

What We Want

1
2
+
1
3
+
1
4
∗
5
4

Operator Overloading

• Python has methods that
correspond to built-in ops
§ __add__ corresponds to +
§ __mul__ corresponds to *

§ __eq__ corresponds to ==
§ Not implemented by default

• To overload operators you
implement these methods

11/7/24 Operators and Abstraction 9

Why not use the
standard Python
math operations?

Operator Overloading: Multiplication
class Fraction(object):
 """Instance is a fraction n/d"""
 # _numerator: an int
 # _denominator: an int > 0

 def __mul__(self,q):
 """Returns: Product of self, q
 Makes a new Fraction; does not
 modify contents of self or q
 Precondition: q a Fraction"""
 assert type(q) == Fraction
 top= self._numerator*q._numerator
 bot= self._denominator*q._denominator
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q

>>> r = p.__mul__(q)

Python
converts to

Operator overloading uses
method in object on left.

11/7/24 Operators and Abstraction 10

Operator Overloading: Addition
class Fraction(object):
 """Instance is a fraction n/d""”
 # _numerator: an int
 # _denominator: an int > 0

 def __add__(self,q):
 """Returns: Sum of self, q
 Makes a new Fraction
 Precondition: q a Fraction"""
 assert type(q) == Fraction
 bot= self._denominator*q._denominator
 top= (self._numerator*q._denominator+
 self._denominator*q._numerator)
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p+q

>>> r = p.__add__(q)

Python
converts to

Operator overloading uses
method in object on left.

11/7/24 Operators and Abstraction 11

Comparing Objects for Equality

• Earlier in course, we saw ==
compare object contents
§ This is not the default
§ Default: folder names

• Must implement __eq__
§ Operator overloading!
§ Not limited to simple

attribute comparison
§ Ex: cross multiplying

1 2
2 4

class Fraction(object):
 """Instance is a fraction n/d"""
 # _numerator: an int
 # _denominator: an int > 0

 def __eq__(self,q):
 """Returns: True if self, q equal,
 False if not, or q not a Fraction"""
 if type(q) != Fraction:
 return False
 left = self._numerator*q._denominator
 rght = self._denominator*q._numerator
 return left == rght

4 4

11/7/24 Operators and Abstraction 12

is Versus ==

• p is q evaluates to False
§ Compares folder names
§ Cannot change this

• p == q evaluates to True
§ But only because method

__eq__ compares contents

id2
Point

id2p id3q

x 2.2

y

z

5.4

6.7

id3
Point

x 2.2

y

z

5.4

6.7

Always use (x is None) not (x == None)
11/7/24 Operators and Abstraction 13

Structure of a Proper Python Class
class Fraction(object):
 """Instance is a fraction n/d"""
 # _numerator: an int
 # _denominator: an int > 0

 def getNumerator(self):
 """Returns: Numerator of Fraction"""
 …
 def __init__(self,n=0,d=1):
 """Initializer: makes a Fraction"""
 …
 def __add__(self,q):
 """Returns: Sum of self, q"""
 …
 def normalize(self):
 """Puts Fraction in reduced form"""
 …

Docstring describing class
Attributes are all hidden

Getters and Setters.

Initializer for the class.
Defaults for parameters.

Python operator overloading

Normal method definitions

11/7/24 Operators and Abstraction 14

Recall: Overloading Multiplication
class Fraction(object):
 """Instance is a fraction n/d"""
 # _numerator: an int
 # _denominator: an int > 0

 def __mul__(self,q):
 """Returns: Product of self, q
 Makes a new Fraction; does not
 modify contents of self or q
 Precondition: q a Fraction"""
 assert type(q) == Fraction
 top = self._numerator*q._numerator
 bot= self._denominator*q._denominator
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python
converts to

Can only multiply fractions.
But ints “make sense” too.

11/7/24 Operators and Abstraction 15

Solution: Look at Argument Type

• Overloading use left type
§ p*q => p.__mul__(q)
§ Done for us automatically
§ Looks in class definition

• What about type on right?
§ Have to handle ourselves

• Can implement with ifs
§ Write helper for each type
§ Check type in method
§ Send to appropriate helper

class Fraction(object):
 …
 def __mul__(self,q):
 """Returns: Product of self, q
 Precondition: q a Fraction or int"""
 if type(q) == Fraction:
 return self._mulFrac(q)
 elif type(q) == int:
 return self._mulInt(q)
 …
 def _mulInt(self,q): # Hidden method
 return Fraction(self._numerator*q,
 self._denominator)

11/7/24 Operators and Abstraction 16

A Better Multiplication
class Fraction(object):
 …
 def __mul__(self,q):
 """Returns: Product of self, q
 Precondition: q a Fraction or int"""
 if type(q) == Fraction:
 return self._mulFrac(q)
 elif type(q) == int:
 return self._mulInt(q)
 …
 def _mulInt(self,q): # Hidden method
 return Fraction(self._numerator*q,
 self._denominator)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = p*q

>>> r = p.__mul__(q) # OK!

Python
converts to

See frac3.py for a full
example of this method

11/7/24 Operators and Abstraction 17

What Do We Get This Time?
class Fraction(object):
 …
 def __mul__(self,q):
 """Returns: Product of self, q
 Precondition: q a Fraction or int"""
 if type(q) == Fraction:
 return self._mulFrac(q)
 elif type(q) == int:
 return self._mulInt(q)
 …
 def _mulInt(self,q): # Hidden method
 return Fraction(self._numerator*q,
 self._denominator)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = q*p

11/7/24 Operators and Abstraction 18

A: Fraction(2,2)
B: Fraction(1,1)
C: Fraction(2,4)
D: Error
E: I don’t know

What Do We Get This Time?
class Fraction(object):
 …
 def __mul__(self,q):
 """Returns: Product of self, q
 Precondition: q a Fraction or int"""
 if type(q) == Fraction:
 return self._mulFrac(q)
 elif type(q) == int:
 return self._mulInt(q)
 …
 def _mulInt(self,q): # Hidden method
 return Fraction(self._numerator*q,
 self._denominator)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = q*p

11/7/24 Operators and Abstraction 19

A: Fraction(2,2)
B: Fraction(1,1)
C: Fraction(2,4)
D: Error
E: I don’t know

CORRECT

Meaning determined by left.
Variable q stores an int.

class Fraction(object):
 """Instances are normal fractions n/d"""
 # INSTANCE ATTRIBUTES
 # _numerator: int
 # _denominator: int > 0

class FractionalLength(Fraction):
 """Instances are fractions with units """
 # INSTANCE ATTRIBUTES same but
 # _unit: one of 'in', 'ft', 'yd'
 def __init__(self,n,d,unit):
 """Make length of given units"""
 assert unit in ['in', 'ft', 'yd']
 super().__init__(n,d)
 self._unit = unit

>>> p = Fraction(1,2)
>>> q = FractionalLength(1,2,'ft')
>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python
converts to

__mul__ has precondition
type(q) == Fraction

11/7/24 Operators and Abstraction 20

A Problem with Subclasses

The isinstance Function

• isinstance(<obj>,<class>)
§ True if <obj>’s class is same

as or a subclass of <class>
§ False otherwise

• Example:
§ isinstance(e,Executive) is True
§ isinstance(e,Employee) is True
§ isinstance(e,object) is True
§ isinstance(e,str) is False

• Generally preferable to type
§ Works with base types too!

11/7/24 Operators and Abstraction 21

e id4

id4
Executive

_salary 0.0

_start 2012

_name 'Fred'

_bonus 0.0

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2012)
>>> isinstance(e,Executive)
???

11/7/24 Operators and Abstraction 22

A: True
B: False
C: Error
D: I don’t know

e id5

id5
Employee

_salary 50k

_start 2012

_name 'Bob'

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

11/7/24 Operators and Abstraction 23

A: True
B: False
C: Error
D: I don’t know

object

Executive

Employee

→ means “extends”
or “is an instance of”

Correct

Fixing Multiplication
class Fraction(object):
 """Instances are fractions n/d"""
 # _numerator: int
 # _denominator: int > 0

 def __mul__(self,q):
 """Returns: Product of self, q
 Makes a new Fraction; does not
 modify contents of self or q
 Precondition: q a Fraction"""
 assert isinstance(q, Fraction)
 top = self.numerator*q.numerator
 bot = self.denominator*q.denominator
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = FractionalLength(1,2,'ft')
>>> r = p*q

>>> r = p.__mul__(q) # OKAY

Python
converts to

Can multiply so long as it
has numerator, denominator

11/7/24 Operators and Abstraction 24

The Python Data Model

11/7/24 Operators and Abstraction 25

http://docs.python.org/3/reference/datamodel.html

http://docs.python.org/3/reference/datamodel.html

We Have Come Full Circle

• On the first day, saw that a type is both
§ a set of values, and
§ the operations on them

• In Python, all values are objects
§ Everything has a folder in the heap
§ Just ignore it for immutable, basic types

• In Python, all operations are methods
§ Each operator has a double-underscore helper
§ Looks at type of object on left to process

11/7/24 Operators and Abstraction 26

Advanced Topic Warning!

The following will not be on the exam

If you ask “Will this be on the Exam”

we will be .

11/7/24 Operators and Abstraction 27

Example from Old A6: Pixels

• Image is list of list of RGB
§ But this is really slow
§ Faster: byte buffer (???)
§ Beyond scope of course

• Compromise: Pixels class
§ Has byte buffer attribute
§ Pretends to be list of tuples
§ You can slice/iterate/etc…

• Uses data model to do this

11/7/24 Operators and Abstraction 28

0 1 2 3 4 5 6 7 8 9 101112

0
1
2
3
4
5
6
7
8
9
10
11
12

[(255,255,255), (255,255,255), …]

Example from Old A6: Pixels

• Image is list of list of RGB
§ But this is really slow
§ Faster: byte buffer (???)
§ Beyond scope of course

• Compromise: Pixels class
§ Has byte buffer attribute
§ Pretends to be list of tuples
§ You can slice/iterate/etc…

• Uses data model to do this

11/7/24 Operators and Abstraction 29

0 1 2 3 4 5 6 7 8 9 101112

0
1
2
3
4
5
6
7
8
9
10
11
12

[(255,255,255), (255,255,255), …]

Abstraction: Making a type easier to
use by hiding details from the user

lie to you!

Properties: Invisible Setters and Getters
class Fraction(object):
 """Instance is a fraction n/d"""
 # _numerator: an int
 # _denominator: an int > 0
 @property
 def numerator(self):
 """Numerator value of Fraction
 Invariant: must be an int"""
 return self._numerator

 @numerator.setter
 def numerator(self,value):
 assert type(value) == int
 self._numerator = value

>>> p = Fraction(1,2)
>>> x = p.numerator

>>> x = p.numerator()

>>> p.numerator = 2

>>> p.numerator(2)

Python
converts to

Python
converts to

11/7/24 Operators and Abstraction 30

Properties: Invisible Setters and Getters
class Fraction(object):
 """Instance is a fraction n/d"""
 # _numerator: an int
 # _denominator: an int > 0
 @property
 def numerator(self):
 """Numerator value of Fraction
 Invariant: must be an int"""
 return self._numerator

 @numerator.setter
 def numerator(self,value):
 assert type(value) == int
 self._numerator = value

Decorator specifies that next
method is getter for property
of the same name as method

Docstring describing property

Property uses hidden attribute.

Decorator specifies that next
method is the setter for property

whose name is numerator.

11/7/24 Operators and Abstraction 31

Properties: Invisible Setters and Getters
class Fraction(object):
 """Instance is a fraction n/d"""
 # _numerator: an int
 # _denominator: an int > 0
 @property
 def numerator(self):
 """Numerator value of Fraction
 Invariant: must be an int"""
 return self._numerator

 @numerator.setter
 def numerator(self,value):
 assert type(value) == int
 self._numerator = value

Only the getter is required!

If no setter, then the
attribute is “immutable”.

Goal: Data Encapsulation
Protecting your data from

other, “clumsy” users.

Replace Attributes w/ Properties
(Users cannot tell difference)

11/7/24 Operators and Abstraction 32

