Lecture 10

Memory in Python

Announcements For This Lecture

Assignment 1 More Assignments
* Work on your revisions * Assignment 2 due Sunday
= Read feedback carefully * Scan and submit online

= Upload before midnight
= Late: -10% per day
= No lates after Friday

= Partial credit after Friday

« Early survey results

= 432 responded so far « Assignment 3 up Sunday

® Deadline 1s Friday * Due Thur October 10
= Avg Time: 6.9 hours = Should take as long as Al
= STD Dev: 4.0 hours = Graded before exam

9/26/24 Memory in Python

Speaking of the Exam

e Prelim 1 is Oct 17t at 7:30-9:00

= Material is up to October 31
" Questions come from labs or assignments

* How do you study for it?

= Will post a study guide this weekend

= Can also look at old exams on web page
e Contlict with Prelim time?

= Submit to Prelim 1 Conflict assignment on CMS
= Do not submit if you have no conflict

9/26/24 Memory in Python

The Three “Areas” of Memory

The
Heap

Global

Frames Objects
w— def max(x,y):

if x >y: Space Global frame function
return Xx max max(x, y)
return y s |1
b |2
a =1
b =2
max
max(a,b)
x |1
Edit code y |2

Call Stack

<< First < Back | Step 5 of 8 | Forward

9/26/24 Memory in Python 4

Global Space

* This 1s the area you “start with”

* First memory area you learned to visualize

= A place to store “global variables”

= Lasts until you quit Python D id2

* What are global variables?

= Any assignment not in a function definition
* Also modules & function definitions!

= Will see more on this 1n a bit

9/26/24 Memory in Python

The Call Stack

e The area where call frames live

= (Call frames are created on a function call

= May be several frames (functions call functions)

= Each frame deleted as the call completes

 Area of volatile, temporary memory

= Less permanent than global space

" Think of as “scratch™ space

* Primary focus of Assignment 2

9/26/24

Memory in Python

iner x

q

id2

Heap Space or “The Heap”

* Where the “folders” live

= Stores only folders

* Can only access indirectly L
= Must have a variable with identifier O
= Can be 1n global space, call stack X 0.0

* MUST have variable with id y 0.0
= If no variable has 1d, it 1s forgotten) T

= Disappears in Tutor immediately
* But not necessarily in practice
= Role of the garbage collector

9/26/24 Memory in Python

Everything is an Object!

 Last time we saw that everything is an object

= Must have a folder in the heap

= Must have variable in global space, call stack

= But 1ignore basic types (int, float, bool, str)

* Includes modules and function definitions!

9/26/24

bject 1s created by import

bject 1s created by def

Iready seen this in Python Tutor

Memory in Python

Modules and Global Space

» Importing a module: import math
= (Creates a global variable Global Space
(same name as module) Heap Space math | id5
= Puts contents in a folder s
* Module variables module
 Module functions pi | 3.141592
= Puts folder 1d 1n variable e | 2.718281

* from keyword dumps
contents to global space

9/26/24 Memory in Python

Modules vs Objects

Module Object
math id2 p id3
id2 id3
module . 5.0 Point3
i | 3.141592
Pt y | 2.0
e |2.718281
4) 4 3-OL)
@ math.pi p.X
math.cos(l) p.clamp(-1,1)
. y, . y,

9/26/24

Memory in Python

10

Modules vs Objects

Module Object
math id2 id3
id2
ns
The period () meid
. 0 €Y
pi |3.14150 «“go inside of the T :
e |2.718281 '
- N 3.0 L
@ math.pi p.X
math.cos(l) p.clamp(-1,1)
\ y \

9/26/24

Memory in Python

/

11

S0 Why Have Both?

* Question 1s a matter of program design

* Some software will use modules like objects

* Classes can have many instances
* Infinitely many objects for the Pointd class

= Reason we need a constructor function

* Each module 1s a unique instance
* Only one possibility for pi, cosine
= That 1s why we import them

* Sometimes refer to as singleton objects

9/26/24 Memory in Python 12

S0 Why Have Both?

* Question 1s a matter of program design

* Some software will use modules like objects

* Classes can have many instazzs

= Only®E"possibility for pi, cosine
= That 1s why we import them

* Sometimes refer to as singleton objects

9/26/24 Memory in Python

13

How About import *?

from math import * Globals Objects

- X = cos(1l) global function
acos(...)

)

| =) acos

R acosh & function

<< First <Back Step2o0of2 Forward > Last >> acosh(...)

asin
asinh function
T asin(...)
atan2 :
function
atanh asinh(...)
ceil
) function
copysign atan(...)
cos
cosh function
Ouch! e
. degrees
orf function
atanh(...)
erfc
exp function
ST ceil(...)
fabs function

)

coovsign(...)

fantArial

9/26/24 Memory in Python

Functions and Global Space

* A function definition... def to_centigrade(x):
Body }

= Creates a global variable | return 5*(x-32)/9.0
(same name as function)

Global S
= Creates a folder for body OPATSPALE

to_centigrade | id6

= Puts folder 1d in variable

e Variable vs. Call Heap Space
>>> t,0_centigrade idé6
<fun to_centigrade at 0x100498de8> function

>>> t,0_centigrade (32)
0.0

9/26/24 Memory in Python 15

Working with Function Variables

* So function definitions are objects
* Function names are just variables
= Variable refers to a folder storing the code

" [f you reassign the variable, it 1s lost

* You can assign them to other variables
= Variable now refers to that function
= You can use that NEW variable to call it

= Just use variable in place of function name

9/26/24 Memory in Python 16

Example:

add_one

def
-
y =
Z =
<< First < Back
9/26/24

add_one(x):
""""Returns X+1|lllll
return x+1

add_one
y(2)

Step40of 5 Forward > Last >>

Globals

global
add_one

y

Frames

add_one

X 2

Frame remembers
the original name

Memory in Python

Objects

function
add_one(x)

17

Example: add_one

<< First

9/26/24

Globals
def add_one(x):

mman "Returns X+1II mmn globa_l
return x+1

y = add one

< Bac

Frame remembers
the original name

Memory in Python

Objects

function
add_one(x)

18

Why Show All This?

* Many of these are advanced topics

* Only advanced programmers need

= Will never need in the context of 1110
* But you might use them by accident
* Goal: Teach you to read error messages

" Need to understand what messages say

* Only way to debug your own code

* This means understanding the call stack

9/26/24 Memory in Python

19

Recall: Call Frames

1. Draw a frame for the call Call: to_centigrade(50.0)
2. Assign the argument value $o_centigrade 1
to the parameter (in frame)
3. Execute the function body < 500
= Look for variables in the frame

= If not there, look for global
variables with that name

4. Erase the frame for the call

def to_centigrade(x):
1 || return 5*(x-32)/9.0

9/26/24 Memory in Python

Aside: What Happens Each Frame Step?

* The 1nstruction counter always changes

* The contents only change 1f
" You add a new variable
" You change an existing variable

= You delete a variable

* If a variable refers to a mutable object
* The contents of the folder might change

9/26/24 Memory in Python

21

Recall: Call Frames

1. Draw a frame for the call

2. Assign the argument value
to the parameter (in frame)

3. Execute the function body

= Look for variables in the frame

= If not there, look for global
variables with that name

4. Erase the frame for the call

def to_centigrade(x):
1 || return 5*(x-32)/9.0

Call: to_centigrade(50.0)

to_centigrade

1

x | 50.0

mappening here? }

9/26/24 Memory in Python

22

Function Access to Global Space

* Consider code to right

= (Global variable a

* Function definition get

_a

e Consider the call get_a()

= Call frame to the right
* What happens?

A It crashes
B: Returns None

C: Returns 4
D: 1 don’t know

9/26/24

Memory in Python

Global Space
(for globals.py)

a |4

get_a

globals.py
"""Show how globals work"""
a = 4 # global space

def get_a():
| return a

23

Function Access to Global Space

* Consider code to right

= (Global variable a

= Function definition get_a

e Consider the call get_a()

= Call frame to the right
* What happens?

A It crashes
B: Returns None

C: Returns 4
D: 1 don’t know

CORRECT

9/26/24

Memory in Python

Global Space

(for globals.py) a |4

get_a 6

globals.py
"""Show how globals work"""
a = 4 # global space

def get_a():
| return a

24

Function Access to Global Space

* All function definitions
are 1n some module

 (Call can access global
space for that module

= math.cos: global for math

= temperature.to_centigrade
uses global for temperature

* But cannot change values

= Makes a new local variable!

* Why we limit to constants

9/26/24 Memory in Python

Global Space

a

(for globals.py)

get_a

globals.py
"""Show how globals work"""
a = 4 # global space

def get_a():
| return a

25

Function Access to Global Space

* All function definitions
are 1n some module

 (Call can access global
space for that module

= math.cos: global for math

= temperature.to_centigrade

uses global for temperature

* But cannot change values

= Makes a new local variable!

* Why we limit to constants

9/26/24

Memory in Python

Global Space

(for globals.py) a

change_a

globals.py
"""Show how globals work"""
a = 4 # global space

def change_a():
| a = 8.5 # local variable

26

Frames and Helper Functions

L.
3

S
4,
5.
6

7

3
9.
10.

11.

9/26/24

def last _name_ first(s):

"""Precond: s in the form
'first-name last-name' """
first = first_name(s)
last = last_name(s)
return last + ', + first

def first name(s):

"""Precond: see above"""
end = s.find("' ")
return s[0:end]

Memory in Python

Call: last_name_first('Walker White"):

last_name_ first

4

S 'Walker White'

27

Frames and Helper Functions

g
Not done. Do not erase!

def last_name_first(s): Call: lastL —— /—J

"""Precond: s in the form last_name_first | 4

'first-name last-name' """
(' first = first_name(s))

1.

r

S |
A S 'Walker White'
D. last = last_name(s)

6

it

8

9

return last + ', + first

first name 10

def first name(s): :

'Walker White'

: """Precond: see above"""
10. end = s.find(' ")
11. return s[0:end]

9/26/24 Memory in Python 28

Frames and Helper Functions

L.
3

S
4,
5.
6

7

3
9.
10.

11.

9/26/24

def last _name_ first(s):

"""Precond: s in the form
'first-name last-name' """
(" first = first_name(s))
last = last_name(s)
return last + ', + first

def first name(s):

"""Precond: see above"""
end = s.find("' ")
return s[0:end]

Memory in Python

Call: last_name_first('Walker White"):

last_name_ first

4

S

'Walker White'

first name

11

S

end

'Walker White'

6

29

Frames and Helper Functions

L.
3

S
4,
5.
6

7

3
9.
10.

11.

9/26/24

def last _name_ first(s):

"""Precond: s in the form
'first-name last-name' """
(" first = first_name(s))
last = last_name(s)
return last + ', + first

def first name(s):

"""Precond: see above"""
end = s.find("' ")
return s[0:end]

Memory in Python

Call: last_name_first('Walker White"):

last_name_ first

4

S

'Walker White'

first name

S

end

'Walker White'

6

RETURN 'Walker'

30

Frames and Helper Functions

L.
3
S
4,
5.
6
7
3
9

10.
11.

9/26/24

def last _name_ first(s):

"""Precond: s in the form
'first-name last-name' """
(" first = first_name(s))
last = last_name(s)
return last + ', + first

def first name(s):

"""Precond: see above"""
end = s.find("' ")
return s[0:end]

Memory in Python

Call: last_name_first('Walker White"):

last_name_ first

S

S

'Walker White'

first

'Walker'

£r
SE
WHOLEF
Ry,
&

Frames and Helper Functions

L.
3
4.
4,
5
6

def last _name_ first(s):

"""Precond: s in the form
'first-name last-name' """
first = first_name(s)

(' last = last_name(s))
return last + ', + first

13. def last_name(s):

14.
19.
16.

9/26/24

"""Precond: see above"""
end = s.rfind("' ")
return s[end+1:]

Memory in Python

Call: last_name_first('Walker White"):

last_name_ first

S

first

S

'Walker White'

'Walker'

last _name

S

15

'Walker White'

32

The Call Stack

 Functions are stacked

= Cannot remove one above

Frame 1

w/0 removing one below

Frame 2

" Sometimes draw bottom up

(better fits the metaphor)

Frame 3

 Stack represents memory
as a high water mark

Frame 4

= Must have enough to keep the

Frame 5

entire stack in memory

= Error if cannot hold stack

9/26/24 Memory in Python

33

The Call Stack

 Functions are stacked

= Cannot remove one above

Frame 1

w/0 removing one below

Frame 2

" Sometimes draw bottom up

(better fits the metaphor)

Frame 3

 Stack represents memory
as a high water mark

Frame 4

= Must have enough to keep the
entire stack in memory

= Error if cannot hold stack

9/26/24 Memory in Python

calls

calls

calls

34

The Call Stack

 Functions are stacked

= Cannot remove one above

Frame 1

w/0 removing one below

Frame 2

" Sometimes draw bottom up

(better fits the metaphor)

Frame 3

 Stack represents memory
as a high water mark

Frame 4

= Must have enough to keep the

Frame 6

entire stack in memory

= Error if cannot hold stack

9/26/24 Memory in Python

35

Anglicize Example

9/26/24

def tens(n):
"""Returns:

Parameter: the integer to anglicize

tens-word for n

Frames Objects
Global frame function
anglicize(n)
anglicize

Precondition: n in 2..9""" anglicize1000 function
. anglicizel000(n
- if n == anglicize1to19 & (m
1 'freturn twenty anglicize20to99 function
elif n == ici
return 'thirty’ anglicize100t0999 anglicizeltold(n)
elif n == tens function
return 'forty' anglicize20to99(n)
elif n == anglicize function
errztEEHG.ﬁfty n 234756 anglicizel0®0to999(n)
return 'sixty' o function
elif n == 7: anglicizel000 tens(n)
return 'seventy' n 756
elif n ==
return ‘eighty anglicizel®0to999
return 'ninety’ n 756
hundreds |56
~ suffix |""
N
<<First <Back Step 26 of 89 Forward> Last >> anglicize20to99
line that has just executed n 56
== next line to execute
tens
n |5

Memory in Python 36

Anglicize Example

9/26/24

def tens(n):

"""Returns:

tens-word for n

Parameter: the integer to anglicize

Precondition:

- if n ==

return

elif n ==

return

elif n ==

return

elif n ==

return

elif n ==

return
elif n == 7:
return

elif n ==

return

return 'ninety'

<< First < Back

line that has just executed
== next line to execute

n in 2..9"""

Step 26 of 89

Last >>

Frames

Global frame
anglicize
anglicize1000
anglicizelto19
anglicize20to99
anglicize100to999

tens

-

anglicize

n 234756

anglicizel000
n 756

anglicizel®0to999
n 756
hundreds |56

suffix |""

anglicize20to99
n |56

tens

~N

Global
Space

function
anglicizeltol9(n)

function
anglicize20to99(n)

Memory in Python

Call Stack

37

