
CS 1110 Prelim 2 Solutions, April 2024

1. [8 points] Iteration and lists. It’s election time! Every vote counts, but let’s make some votes
count more than others. Implement the following function, making effective use of for-loops.

def amplify_my_vote(ballots, chosen):

""" Modifies the list `ballots` as follows:

Every vote for the `chosen` candidate is added a second time

to the end of the ballot list.

Note: the votes should not be considered case sensitive. If the

chosen candidate is "Matt", the function SHOULD double votes

for "MATT" "matt" "MAtt"... with their original cases.

This function does not return anything.

Examples:

amplify_my_vote(["Ada", "Bob", "Caz", "Deb"], "Ada")

ballots becomes ["Ada", "Bob", "Caz", "Deb", "Ada"]

amplify_my_vote(["ada", "bob", "ADA", "deb"], "Ada")

ballots becomes ["ada", "bob", "ADA", "deb", "ada", "ADA"]

amplify_my_vote(["Leo", "Mik", "Leo"], "")

ballots becomes/remains ["Leo", "Mik", "Leo"]

amplify_my_vote([], "Ada")

ballots becomes/remains []

Preconditions:

ballots: a (possibly empty) list of str

chosen: a (possibly empty) str """

Solution #1: add them directly (note: must use indicies!)

for i in range(len(ballots)):

if ballots[i].lower() == chosen.lower():

ballots.append(ballots[i])

Solution #2: add them afterwards (note: can loop thru elements)

adds = []

for s in ballots:

if s.lower() == chosen.lower():

adds.append(s)

for a in adds:

ballots.append(a)

2. [14 points] Dictionaries. Implement this function according to its specification:

def get_mapping(word1, word2):

"""

Returns the dictionary that contains the mapping that would turn

`word1` into `word2` or None if no such mapping exists (meaning no

1-for-1 character replacement can produce `word2` from `word1`)

In this dictionary, the key is the character from `word1` and

the value is the character it should be replaced with in order

to produce `word2`

A character may be replaced by itself ('love'->'love').

More than 1 character may be replaced by the same character ('rap'->'ooo')

One character may NOT be replaced by multiple characters ('moo'->'mop')

Examples:

word1: 'love' , word2: 'love'

the function returns {'l':'l','o':'o','v':'v','e':'e'}

word1: 'book' , word2: 'seem'

the function returns {'b':'s', 'o':'e', 'k':'m'}

word1: 'sassy' , word2: 'daddy'

the function returns {'s':'d', 'a':'a', 'y':'y'}

word1: 'rap' , word2: 'ooo'

the function returns {'r':'o','a':'o','p':'o'}

word1: '' , word2: ''

the function returns {}

word1: 'lovely' , word2: 'lo'

the function returns None

word1: 'moo' , word2: 'mop'

the function returns None

Precondition: `word1` and `word2` are (possibly empty) strings

of exclusively lower case letters a-z

"""

Please implement your function on the next page!

Page 2

def get_mapping(word1, word2):

if len(word1) != len(word2):

return None

mapping = {}

for i in range(len(word1)):

c1 = word1[i]

c2 = word2[i]

if c1 in mapping:

c_new = mapping[c1]

if c2 != c_new:

return None

else:

mapping[c1] = c2

return mapping

Page 3

3. [14 points] Recursion. Imagine that we are representing Python modules Python classes. Let
Module be a class whose objects have the following two attributes:

name [str] - unique non-empty name of module

imps [possibly empty list of Module] - modules that need to be

imported in order for this module to work correctly

Implement the following function (not an object method), making effective use of recursion.
For-loops are allowed as long as your solution is fundamentally recursive.

def depends_on(mod, target):

"""Returns: True if Module `mod` depends on a Module named `target`

False otherwise

Directly, a Module depends on itself and its imports. Indirectly, a

Module also depends on all of the Modules that its imports depend on.

So if A imports B, and B imports C, then A depends on C.

Parameter `mod` : the Module we're interested in

Precondition: `mod` is a Module object

Parameter `target` : name of the Module we want to know if `mod` depends on

Precondition: `target` is a str

------ Here is a simplified example from A6 ------

m1 = Module("math",[]) # imports nothing

m2 = Module("consts",[]) # imports nothing

m3 = Module("cnlasserts", [m1]) # imports math

m4 = Module("player", [m2, m3]) # imports consts, cnlasserts

depends_on(m1, "math") Returns True (math depends on itself)

depends_on(m2, "math") Returns False (consts imports nothing)

depends_on(m3, "math") Returns True (cnlasserts imports math)

depends_on(m4, "math") Returns True (player depends on math (via cnlasserts))

"""

Please implement your function on the next page!

Page 4

def depends_on(mod, target):

if (mod.name == target):

return True

for i in mod.imps:

if depends_on(i, target):

return True

return False

Page 5

4. [8 points] Visualizing Python. For this question, you will be shown the state of memory
before a single assignment statement is executed. Modify the drawing to show how memory
changes after that single assignment statement has been executed. If at any point an error is
thrown, please write ERROR next to the assignment statement; only draw the changes to
memory that would occur before the error occurs. Each part is independent.

Notice: there is no Call Stack.
(The assignment statements are not inside
functions or methods.)
To the right is an example. The statement
to execute is shown in pink and the answer
is shown in blue.

Page 6

5. [8 points] Visualizing Methods. For this question, you will be shown the state of memory
before a single Python statement is executed. Modify the drawing to show how memory changes
after that single statement has been executed. If at any point an error is thrown, please write
ERROR next to the assignment statement; only draw the changes to memory that would
occur before the error occurs. Do not worry about changing the Program Counter in the top
right corner of the call frame. (Since we are not showing you the code, you can’t know what
the next line of executable code will be). Once again, each part is independent. Notice that
there is a call stack: each line being executed exists inside a method.

Page 7

Page 8

6. Classes. Consider the following class, defined as follows:

class SandwichOrder:

"""A class to represent a sandwich order

3 Class Attributes:

total_orders: [int] the total number of sandwich orders

total_revenue: [float] total revenue from all sandwich orders

PRICES: [dict] prices of 'bread', 'protein', 'cheese', 'topping'

6 Instance Attributes:

name: [str] name of the customer, for example 'Luke Calka'

bread: [str] name of the bread, for example 'Wheat'

protein: [str] name of the protein, for example 'Ham',

empty string ('') indicates no protein on the sandwich

with_cheese: [bool] True if the Sandwich should have cheese on it

toppings: [list of str without duplicates]

price: [float] should ALWAYS represent the price of this sandwich

"""

Class Attributes

These should ALWAYS accurately reflect the state of all orders made

total_orders = 0 # the number of sandwich orders

total_revenue = 0.0 # the total prices across all orders

PRICES = {'bread': 2.00, 'protein': 4.00, 'cheese': 1.50, 'topping': 0.50}

PRICES are by category:

all proteins cost $4

each topping costs $0.50

... and so forth

Page 9

(a) [8 points] Implement this method of SandwichOrder according to its specification:

def calculate_price(self):

"""

Calculates the price of the sandwich order based on the PRICES of

bread, protein, cheese, and toppings.

The price should be assigned to the object's `price` attribute.

Returns: Nothing!

Example:

If sandwich order has wheat bread, turkey protein, cheese,

and 3 toppings: lettuce, tomato and mayo

price would be: 2.00 (bread) + 4.00 (protein) + 1.50 (cheese) +

+ 0.50 (topping) + 0.50 (topping) + 0.50 (topping) = $9.00

Precondition: the identifier self is an initialized SandwichOrder with

attributes name, bread, protein, with_cheese, and toppings

"""

self.price = SandwichOrder.PRICES['bread']

if self.protein != "":

self.price += SandwichOrder.PRICES['protein']

if self.with_cheese:

self.price += SandwichOrder.PRICES['cheese']

self.price += (len(self.toppings) * SandwichOrder.PRICES['topping'])

alternate price calculation, using a for loop:

#

for topping in self.toppings:

self.price += SandwichOrder.PRICES['topping']

Page 10

(b) [12 points] Implement the init method of SandwichOrder according to its specifica-
tion. Avoid redundancies between your code here and the previous page.

def __init__(self, name, bread, protein, cheese, tops=None):

"""

Initializes a new instance of a SandwichOrder with given parameters.

Calculates initial price of the sandwich.

Also updates relevant Class Attributes as necessary.

Example calls:

s1 = SandwichOrder('John Wick', 'Wheat', '', True, ['Pickles', 'Mayo'])

s2 = SandwichOrder('Max Rockatansky', 'Sourdough', 'Chicken', False)

parameters name, bread, protein, and cheese can all be assigned to

their respective instance attributes (see class specification)

toppings: should be assigned the empty list [] if no list is provided

(i.e., `tops` has the default value None)

should be assigned the list id `tops` if a list IS supplied as

an argument (do not create a new list)

Preconditions: name: non-empty str

bread: non-empty str

protein: (possibly empty) str

cheese: bool, False means no cheese please

tops: None or [list of str] of chosen toppings

items in tops are guaranteed to be unique

"""

self.name = name

self.bread = bread

self.protein = protein

self.with_cheese = cheese

self.toppings = tops

if tops is None:

self.toppings = []

self.calculate_price()

SandwichOrder.total_orders += 1

SandwichOrder.total_revenue += self.price

Page 11

7. [10 points] Debugging. Consider the following two classes and 3 lines of code that use them:

1 class Engine:

2 """ A class to represent an engine.

3

4 2 Instance Attributes:

5 max_time, INVARIANT: non-empty str of digits, example: '1000'

6 curr_usage, INVARIANT: int >= 0

7 """

8 # Attributes can be changed, but the INVARIANTS must always be satisfied.

9 # Example: curr_usage should never go negative or become a float.

10 def __init__(self, maxi):

11 """

12 Initializes: the Engine with the given maximum time.

13 the current usage to zero.

14

15 Precondition: maxi: a str, a positive number ending in 'h', like '25h'

16 """

17 self.max_time = maxi.replace('h', '')

18 self.curr_usage = 0

19

20 class Airplane:

21 """ A class to represent an airplane with some number of engines

22 Instance Attribute `engines`: a (possibly empty) list of Engine

23 """

24 def __init__(self, engines):

25 """ Initializes: the Airpline with the given engine list """

26 self.engines = engines

27

28 def use_engine(Engine, engine, hour):

29 """ Increases `engine`'s current usage by `hour`

30 Preconditions: engine is a int, 0 <= engine < len(self.engines)

31 hour is a int >= 0 """

32 Engine.engines[engine].curr_usage += Engine.engines[engine].hour

33

34

35 def needs_service(self):

36 """ True if any engine's usage reaches its max. """

37 i = 0

38 while i < len(self.engines):

39 eng = self.engines[i]

40 if eng.curr_usage >= eng.max_time:

41 return True

42 i = i + 1

43 return False

44

45 a = Airplane([Engine('2500h'), Engine('2500h')])

46 a.use_engine(0, 100)

47 print(a.needs_service())

Page 12

When the given code is run in Python, the following error is reported:

Traceback (most recent call last):

File "airplane.py", line 46, in <module>

a.use_engine(0, 100)

File "airplane.py", line 32, in use_engine

Engine.engines[engine].curr_usage += Engine.engines[engine].hour

AttributeError: 'Engine' object has no attribute 'hour'

(a) Fix the code so that the line of code throwing the above error can successfully execute.
Fix only the code that is responsible for throwing the error. Mark your fix(es)
with the label FIX1.

FIX1: Engine.engines[engine].curr usage += Engine.engines[engine].hour

Note: the fact that the first parameter is called ‘Engine’ is weird but it does not affect
correctness and should not be changed.

(b) You fix the above error and rerun the code. Now a new error is reported:

Traceback (most recent call last):

File "airplane.py", line 47, in <module>

print(a.needs_service())

File "airplane.py", line 40, in needs_service

if eng.curr_usage >= eng.max_time:

TypeError: '>=' not supported between instances of 'int' and 'str'

Fix the code to remove only this new error. Fix only the code that is responsible for
throwing the error. Pay attention to the invariants that must remain satisfied.
Mark your fix(es) with the label FIX2.

Line 40 should cast eng.max time to be an int like so: int(eng.max time)

(c) Now that you’ve dealt with these errors, let’s address the functionality of one last method.
The needs service method should return True if at least one engine’s curr usage is
greater than or equal to its max time, otherwise return False. When we run the above
code (after fixing parts (a) and (b)), it prints False. Is there a bug in the needs service

method?

Circle One: Yes No

There is a bug!

If you answered Yes, fix the bug and mark your fix(es) with the label FIX3. If you
answered No, provide a test (like lines 45-47) that when run, will correctly print True.

The return False on line 43 needs to be un-indented. Currently the while loop only
checks engine 0 and then returns.

Page 13

