
Last Name: First: Netid:

CS 1110 Prelim 2 November 21st, 2023

This 90-minute exam has 5 questions worth a total of 100 points. Scan the whole test before starting.
Budget your time wisely. Use the back of the pages if you need more space. You may tear the pages
apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, look at any reference material, or otherwise give or receive unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use while-loops on this exam. Beyond that, you may use any Python feature that
you have learned about in class (if-statements, try-except, lists, for-loops, recursion and so on).

Question Points Score

1 2

2 22

3 24

4 28

5 24

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid, at the top of each page.

Last Name: First: Netid:

Reference Sheet

String Operations

Operation Description

len(s) Returns: Number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
s.find(s1) Returns: Index of FIRST occurrence of s1 in s (-1 if s1 is not in s).
s.count(s1) Returns: Number of (non-overlapping) occurrences of s1 in s.
s.lower() Returns: A copy ofs with all letters converted to lower case.
s.upper() Returns: A copy ofs with all letters converted to upper case.
s.islower() Returns: True if s is has at least one letter and all letters are lower case;

it returns False otherwise (e.g. 'a123' is True but '123' is False).
s.isupper() Returns: True if s is has at least one letter and all letters are uppper case;

it returns False otherwise (e.g. 'A123' is True but '123' is False).
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all digits; it returns

False otherwise.
s.isalnum() Returns: True if s is not empty and its elements are all letters or digits;

it returns False otherwise.

List Operations

Operation Description

len(x) Returns: Number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.index(y) Returns: Index of FIRST occurrence of y in x (error if y is not in x).
x.count(y) Returns: the number of times y appears in list x.
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in x. Elements after i are shifted to the right.
x.remove(y) Removes first item from the list equal to y. (error if y is not in x).

Dictionary Operations

Function
or Method

Description

len(d) Returns: number of keys in dictionary d; it can be 0.
y in d Returns: True if y is a key d; False otherwise.
d[k] = v Assigns value v to the key k in d.
del d[k] Deletes the key k (and its value) from the dictionary d.
d.clear() Removes all keys (and values) from the dictionary d.

Page 2

Last Name: First: Netid:

2. [22 points total] Iteration. Implement the functions on the next two pages, according to their
specification, using for-loops. You do not need to enforce preconditions.

(a) [12 points]
def lowercount(lst):

""Returns the number of lowercase letters in each element of lst

Example: lowercount(['abc','Hello','OUT!']) returns [3,4,0]
Example: lowercount(['aBc', '']) returns [2,0]
Precond: lst a nonempty list of strings (the strings can be empty)"""

Create list accumulator
result = []

for s in lst:
Create accumulator for this string
count = 0:

for char in s:
if char.islower():

count += 1

Append count to list accumulator
result.append(count)

return result

Page 3

Last Name: First: Netid:

(b) [10 points]
def replace(text,subst):

"""Returns a COPY of text using subst to replace letters.

The dictionary subst has lowercase letters both as keys and values. This
function takes the string text and replaces any key of subst with the
associated value.

Example: replace('cat',{ 'a':'o' }) returns 'cot'
Example: replace('pet',{ 'a':'o' }) returns 'pet'
Example: replace('razzle',{ 'a':'o', 'z':'b' }) returns 'robble'

Precond: text is a (possibly empty) string of lowercase letters
Precond: subst is a dict with lowercase letters as keys and values"""
HINT: Only loop over ONE of the parameters. One is easier than the other.

Create string accumulator
result = ''

for letter in text:
Check if letter in subst
if letter in subst:

Replace letter if there
result = result+subst[letter]

else:
result = result+letter

return result

NOTE: The following DOES NOT work.
Fails on subst = { 'a':'b', 'b':'a' }
result = text
for x in subst:
result = result.replace(x,subst[x])
return result

Page 4

Last Name: First: Netid:

3. [24 points total] Recursion.

Use recursion to implement the functions on the next two pages. Solutions using loops will
receive no credit.

HINT: To maximize partial credit, do not take shortcuts. Follow the three steps.

(a) [10 points]
def swapcase(s):

"""Returns a copy of s where letter case is swapped.

Upper case letters are replaced by lower case letters. Lower case letters are replaced with
upper case letters. Nonletters are unaffected.

Example: swapcase('Hello World!') returns 'hELLO wORLD!'
Precond: s is a string (possibly empty)."""

Small data
if s == '':

return ''
elif len(s) == 1:

if s.isupper():
return s.lower()

else:
return s.upper()

Break up the string
left = swapcase(s[:1])
right = swapcase(s[1:])

Combine the answers
return left + right

Page 5

Last Name: First: Netid:

(b) [14 points]
def separate(nums):

"""Returns: A tuple separating nums into negative and non-negative portions

This function returns a tuple (neg,pos). The value neg is a list of all the
negative elements of nums (in their order from nums), while pos is a list
of all the non-negative elements of nums (in their order from nums).

Example: separate([1, -1, 2, -5, -3, 0]) returns ([-1, -5, -3], [1, 2, 0])
Example: separate([-1, -5, -3]) returns ([-1, -5, -3],[])
Example: separate([1, 2, 0]) returns ([],[1, 2, 0])
Precond: nums is a (possibly empty) list of integers"""

Small data
if len(nums) == 0:

return ([],[])
elif len(nums) == 1:

if nums[0] < 0:
return (nums[:],[])

else:
return ([],nums[:])

Break up the list
left = separate(nums[:1])
rght = separate(nums[1:])

Combine the answers
neg = left[0]+right[0]
pos = left[1]+right[1]
return (neg,pos)

Page 6

Last Name: First: Netid:

4. [28 points total] Classes and Subclasses

In this problem, you will create a class representing a license plate in a small state. License
plates in this state are a number 0..999 followed by three (upper case) letters. When converted
to a string, the number is padded with leading 0s to make it three digits. Examples of licenses
are 001-ABC or 093-XYZ.

One of the most important properties of a license plate is that there can only be one of them
with a given value. So we cannot have two different objects for the same license 001-ABC. To
model this propery, the class License has a class attribute list named USED. Every time a new
license plate is created, the value is added to this list so that it cannot be used again. In
addition, the license plate value is immutable (since allowing a user to change it would mean
that the user could create two plates with the same value).

In addition to normal license plates, some people like to have vanity plates. A common vanity
plate is one that is attached to a specific university, showing that the owner is an alum. Again,
we cannot have a vanity plate with the same number as an existing plate. But since Vanity is
a subclass of License, this should not be a problem if we initialize it properly.

On the next four pages, you are to do the following:

1. Fill in the missing information in each class header.

2. Add getters and setters as appropriate for the instance attributes

3. Fill in the parameters of each method (beyond the getters and setters).

4. Implement each method according to the specification.

5. Enforce any preconditions in these methods using asserts.

6. Use isinstance when enforcing type-based preconditions.

We have not added headers for any of the getters and setters. You are to write these from scratch.
However, you are not expected to write specifications for the getters and setters. For
the other methods, pay attention to the provided specifications. The only parameters are those
indicated by the preconditions.

Important: Vanity is not allowed to access any hidden attributes of License. We are also
adding the additional restriction that Vanity may not access any getters and setters in License.

Page 7

Last Name: First: Netid:

(a) [18 points] The class License
class License(object): # Fill in missing part

"""A class representing a license plate

CLASS ATTRIBUTES
Attribute USED: All of the license plates used so far
Invariant: USED is a list of tuples (prefix,suffix), initially empty"""
MUTABLE ATTRIBUTES
Attribute _owner: The name of the owner
Invariant: _owner is a NONEMPTY string, or None
IMMUTABLE ATTRIBUTES
Attribute _prefix: The first half of the licence
Invariant: _prefix is an int 0..999, inclusive
#
Attribute _suffix: The second half of the licence
Invariant _suffix is a string of 3 upper case letters

CLASS ATTRIBUTES
USED = []

DEFINE GETTERS/SETTERS/HELPERS AS APPROPRIATE. SPECIFICATIONS NOT NEEDED.
def getOwner(self):

"""
Returns the owner of this license plate
"""
return self._owner

def setOwner(self,value):
"""Sets the owner of this license plate

Parameter value: The owner's name
Precondition: value a nonempty string or None"""
assert value is None or (isinstance(value, str) and value != '')
self._owner = value

def getPrefix(self):
"""
Returns the prefix of this license plate
"""
return self._prefix

def getSuffix(self):
"""
Returns the suffix of this license plate
"""
return self._suffix

Page 8

Last Name: First: Netid:

Class License (CONTINUED).
def __init__(self, prefix, suffix, owner = None): # Fill in missing part

"""Initializes a license plate with the given prefix and suffix.

No license plate can be created if it has the same prefix and suffix as an
existing plate. On creation, the pair (prefix,suffix) is added to the class
attribute USED to ensure that they cannot be reused.

Precond: prefix is an int in 0..999, inclusive
Precond: suffix is a string of 3 upper case letters
Precond: owner is a nonempty string or None (Optional; default None)
Additional precondition: No other plate has this prefix,suffix"""
assert isinstance(prefix, int)
assert 0 <= prefix and prefix <= 999
assert isinstance(suffix,str) and len(suffix) == 3
assert suffix.isupper() and suffix.isalpha()
assert not [prefix,suffix] in License.USED
self.setOwner(owner)
self._prefix = prefix
self._suffix = suffix
License.USED.append((prefix,suffix))

def __str__(self): # Fill in missing part
"""Returns a string representation of this license plate.

The string is of the form prefix-suffix. The prefix is padded with leading 0s
to have three characters. If the plate has an owner, the owner follows the
string in parentheses. Otherwise, nothing is added to the string.
Example: '001-ABC' if no owner, or '093-XYZ (Bob)' """
prefix = str(self._prefix)
prefix = '0'*(3-len(prefix))+prefix
result = prefix + '-' + self._suffix
if not self._owner is None:

result = result+' ('+self._owner+')'
return result

Page 9

Last Name: First: Netid:

(b) [10 points] The class Vanity.
class Vanity(License): # Fill in missing part

"""A class representing a vanity license plate"""
MUTABLE ATTIBUTE (In addition to those from License):
Attribute _university: The university displayed on the plate
Invariant: _university is a a nonempty string

DEFINE GETTERS/SETTERS AS APPROPRIATE. SPECIFICATIONS NOT NEEDED.
def getUniversity(self):

"""
Returns the university displayed on the plate
"""
return self._university

def setUniversity(self,value):
"""Sets the university displayed on the plate

Parameter value: the university name
Precondition: value a nonempty string"""
assert isinstance(value, str) and value != ''
self._university = value

def __init__(self, prefix, suffix, owner, university): # Fill in missing part
"""Initializes a vanity license plate with the given values.

Vanity plates must have an (initial) owner. NO arguments are optional.
Precondition: prefix is an int in 0..999, inclusive
Precondition: suffix is a string of 3 upper case letters
Precondition: owner is a nonempty string, NOT OPTIONAL
Precondition: university is a nonempty string
Additional precondition: No other plate has this prefix,suffix"""
assert not owner is None
This contains asserts and must go first
self.setUniversity(university)
super().__init___(prefix,suffix,owner)

Page 10

Last Name: First: Netid:

Class License (CONTINUED).
def __str__(self): # Fill in missing part

"""Returns a string representation of this vanity plate

The format is 'prefix-suffix (Owner, University)'. If owner is None (the
setter allows this to happen), the format is 'prefix-suffix (University)'.
Example: '001-ABC (Cornell)' if no owner, or '093-XYZ (Bob, Syracuse)'"""
result = super().__str__()
if result[-1] == ')':

result = result[:-1]+', '+self._university+')'
else:

result = result + '('+self._university+')'
return result

5. [24 points total] Call Frames and Name Resolution

Consider the three (undocumented) classes below, together with their line numbers.

1 class A(object):
2 x = 3
3
4 def __init__(self,x):
5 self.x = x+3
6
7 def foo(self,x):
8 self.y = self.x
9 self.z = x

10
11 class B(A):
12 y = 4
13
14 def __init__(self,x):
15 self.foo(x-1)
16

17 class C(B):
18 y = 5
19
20 def __init__(self,x):
21 super().__init__(x+1)
22
23 def foo(self,y):
24 self.y = 2*self.x
25 self.z = 3*y
26
27
28
29
30
31
32

(a) [6 points] Draw the class folders in the heap for these three classes.

A

__init__(self,x)
foo(self,x)

x 3

B(A)

__init__(self,x)

y 4

C(B)

__init__(self,x)
foo(self,y)

y 5

Page 11

Last Name: First: Netid:

(b) [18 points] Below and on the two page, diagram the call

> > > x = C(5)

You will need nine diagrams. Draw the call stack, global space and heap space. If the
contents of any space are unchanged between diagrams, you may write unchanged. You do
not need to draw the class folders from part (a).
When diagramming a constructor, you should follow the rules from Assignment 5. Remem-
ber that __init__ is a helper to a constructor but it is not the same as the constructor.
In particular, there is an important first step before you create the call frame.

Call Stack Global Space The Heap

id1
C

21

self id1

C.__init__

x 5

21

self id1

C.__init__

x 5

15

self id1

B.__init__

x 6

21

self id1

C.__init__

x 5

15

self id1

B.__init__

x 6

24C.foo

id1
C

id1
C

id1
C

1

2

3

4

self id1 y 5

Page 12

Last Name: First: Netid:

Call Frames Global Space The Heap

21

self id1

C.__init__

x 5

self id1

B.__init__

x 6

self id1

C.__init__

x 5

self id1

B.__init__

x 6

self id1

C.__init__

x 5

id1
C

y 6
z 15

21

self id1

C.__init__

x 5

15

self id1

B.__init__

x 6

C.foo

C.foo

id1
C

y 6
z 15

id1
C

y 6
z 15

id1
C

y 6
z 15

x id1

6

7

8

9

self id1 y 5

self id1 y 5

21

self id1

C.__init__

x 5

15

self id1

B.__init__

x 6

25C.foo

id1
C

y 6

5

self id1 y 5

Page 13

