
Prelim 1 Review
Fall 2024

CS 1110

Exam Info

• Prelim 1: Thursday, October 17th at 7:30 pm
§ The exam is entirely online
§ A proctor should contact you with the link
§ Will connect to Zoom twice (computer, phone)

• Mock exam to test your devices on Oct. 16th

§ Your proctor will contact you with details

• Exceptions ONLY if you filed a conflict
• Grades promised Sunday, October 20th
10/9/24

Important Things for Online Exam

1. Computer with a webcam

2. Phone that can connect to Zoom

3. Pen/pencil and paper for the exam

4. Phone app to scan the exam

10/9/24

Studying for the Exam

• Read study guides, review slides online
§ Solution to review posted after review

• Review all labs and assignments
§ Solutions to Assignment 2 are in CMS
§ No solutions to code, but talk to TAs

• Look at exams from past years
§ Exams with solutions on course web page
§ Only look at the fall exams; spring is different

10/9/24

Grading

• We will announce approximate letter grades
§ We adjust letter grades based on all exams
§ But no hard guidelines (e.g. mean = grade X)
§ May adjust borderline grades again at final grades

• Use this to determine whether you want to drop
§ Drop deadline is next week, October 21st

§ Will have open office hours on that day to meet
§ Will reach out to students of concern (C or lower)

10/9/24

What is on the Exam?

• Five Questions on the following topics:
§ String slicing functions (A1)
§ Call frames and the call stack (A2)
§ Functions on mutable objects (A3)
§ Testing and debugging (Labs 6 and 10)
§ Short Answer (Terminology)

• + 2 pts for writing your name and net-id

10/9/24

What is on the Exam?

• Five Questions on the following topics:
§ String slicing functions (A1)
§ Call frames and the call stack (A2)
§ Functions on mutable objects (A3)
§ Testing and debugging (Labs 6 and 10)
§ Short Answer (Terminology)

• + 2 pts for writing your name and net-id

10/9/24

What about lists?

What is on the Exam?

• Five Questions on the following topics:
§ String slicing functions
§ Call frames and the call stack
§ Functions on mutable objects
§ Testing and debugging
§ Short Answer

• + 2 pts for writing your name and net-id

10/9/24

Lists may
appear in

any of
these 5

What is on the Exam?

• String slicing functions (A1)
§ Will be given a function specification
§ Implement it using string methods, slicing

• Call frames and the call stack (A2)
• Functions on mutable objects (A3)
• Testing and debugging (Labs 6 and 10)
• Short Answer (Terminology)

10/9/24

String Slicing

def make_netid(name,n):
 """Returns: a netid for name with suffix n
 Netid is either two letters and a number (if the student has no
 middle name) or three letters and a number (if the student has
 a middle name). Letters in netid are lowercase.
 Example: make_netid('Walker McMillan White',2) is 'wmw2'
 Example: make_netid('Walker White',4) is 'ww4'
 Parameter name: the student name
 Precondition: name is a string either with format 'first last'
 or 'first middle last'
 Parameter n: the netid suffix
 Precondition: n > 0 is an int."""
10/9/24

Useful String Methods

Method Result
s.find(s1) Returns first position of s1 in s; -1 if not there.
s.rfind(s1) Returns LAST position of s1 in s; -1 if not there.
s.lower() Returns copy of s with all letters lower case
s.upper() Returns copy of s with all letters upper case

10/9/24

• We will give you any methods you need
• But you must know how to slice strings!

String Slicing

def make_netid(name,n):
 """Returns: a netid for name with suffix n."""
 name = name.lower() # switch to lower case
 fpos = name.find(' ') # find first space
 first = name[:fpos]
 last = name[fpos+1:]
 mpos = last.find(' ') # see if there is another space
 if mpos == -1:
 return first[0]+last[0]+str(n) # remember, n is not a string
 else:
 middle = last[:mpos]
 last = last[mpos+1:]
 return first[0]+middle[0]+last[0]+str(n)

10/9/24

What is on the Exam?

• String slicing functions (A1)
• Call frames and the call stack (A2)

§ Very similar to A2 (see solution in CMS)
§ May have to draw a full call stack
§ See lectures 4 and 10 (for call stack)

• Functions on mutable objects (A3)
• Testing and debugging (Labs 6 and 10)
• Short Answer (Terminology)
10/9/24

Call Stack Example

• Given functions to right
§ Function fname() is not

important for problem
§ Use the numbers given

• Execute the call:
lname_first('John Doe')

• Draw entire call stack
when helper function
lname completes line 10
§ Draw nothing else

1. def lname_first(s):
2. """Pre: s in the form
3. 'first-name last-name' ""”
4. first = fname(s)
5. last = lname(s)
6. return last + ',' + first
7.
8. def lname(s):
9. """Pre: same as above"""
10. end = s.find(' ')
11. return s[end+1:]

10/9/24

Call Stack Example: lname_first('John Doe')

1. def lname_first(s):
2. """Pre: s in the form
3. 'first-name last-name' ""”
4. first = fname(s)
5. last = lname(s)
6. return last + ',' + first
7.
8. def lname(s):
9. """Pre: same as above"""
10. end = s.find(' ')
11. return s[end+1:]

10/9/24

When this line
 is complete.

Must be in middle
of this function call.

Call Stack Example: lname_first('John Doe')

1. def lname_first(s):
2. """Pre: s in the form
3. 'first-name last-name' ""”
4. first = fname(s)
5. last = lname(s)
6. return last + ',' + first
7.
8. def lname(s):
9. """Pre: same as above"""
10. end = s.find(' ')
11. return s[end+1:]

10/9/24

lname_first 5

'John Doe's

first 'John'

lname 11

'John Doe's

end 4

Call Stack Example: lname_first('John Doe')

1. def lname_first(s):
2. """Pre: s in the form
3. 'first-name last-name' ""”
4. first = fname(s)
5. last = lname(s)
6. return last + ',' + first
7.
8. def lname(s):
9. """Pre: same as above"""
10. end = s.find(' ')
11. return s[end+1:]

10/9/24

lname_first 5

'John Doe's

first 'John'

lname 11

'John Doe's

end 4

No variable last.
Line 5 is not complete.

Line 10 is complete.
Counter is next line.

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. temp = p.x
5. p.x = p.y
6. p.y = p.z
7. p.z = temp

• May get a function on a
mutable object
>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)

• You are not expected to
come up w/ the “folder”
§ Will provide it for you
§ You just track changes

• Diagram all steps

10/9/24

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. temp = p.x
5. p.x = p.y
6. p.y = p.z
7. p.z = temp

>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)
10/9/24

Function Call

id1pid1

1.0
Point3

x

2.0

3.0

y

z

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. temp = p.x
5. p.x = p.y
6. p.y = p.z
7. p.z = temp

>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)
10/9/24

Function Call

id1pid1

1.0
Point3

x

2.0

3.0

y

z

cycle_left 4

p id1

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. temp = p.x
5. p.x = p.y
6. p.y = p.z
7. p.z = temp

>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)
10/9/24

Function Call

id1pid1

1.0
Point3

x

2.0

3.0

y

z

cycle_left 5

p id1

temp 1.0

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. temp = p.x
5. p.x = p.y
6. p.y = p.z
7. p.z = temp

>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)
10/9/24

Function Call

id1pid1

1.0
Point3

x

2.0

3.0

y

z

cycle_left 6

p id1

temp 1.0

x 2.0

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. temp = p.x
5. p.x = p.y
6. p.y = p.z
7. p.z = temp

>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)
10/9/24

Function Call

id1pid1

1.0
Point3

x

2.0

3.0

y

z

cycle_left 7

p id1

temp 1.0

x 2.0

x 3.0

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. temp = p.x
5. p.x = p.y
6. p.y = p.z
7. p.z = temp

>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)
10/9/24

Function Call

id1pid1

1.0
Point3

x

2.0

3.0

y

z

cycle_left

p id1

temp 1.0

x 2.0

x 3.0

x 1.0

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. temp = p.x
5. p.x = p.y
6. p.y = p.z
7. p.z = temp

>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)
10/9/24

Function Call

id1pid1

1.0
Point3

x

2.0

3.0

y

z

cycle_left

p id1

temp 1.0

x 2.0

x 3.0

x 1.0

Do not forget
cross out

What is on the Exam?

• String slicing functions (A1)
• Call frames and the call stack (A2)
• Functions on mutable objects (A3)

§ Given an object type (e.g. class)
§ Attributes will have invariants
§ Write a function respecting invariants

• Testing and debugging (Labs 6 and 10)
• Short Answer (Terminology)
10/9/24

Example from Assignment 3

• Class: RGB
§ Constructor function: RGB(r,g,b)
§ Remember constructor is just a function that

gives us back a mutable object of that type
§ Attributes:

10/9/24

Attribute Invariant
red int, within range 0..255
green int, within range 0..255
blue int, within range 0..255

Function that Modifies Object

def lighten(rgb):
 """Lighten each attribute by 10%
 Attributes get lighter when they increase.
 Parameter rgb: the color to lighten
 Precondition: rgb an RGB object"""
 pass # implement me

10/9/24

Function that Modifies Object

def lighten(rgb):
 """Lighten each attribute by 10%"""
 red = rgb.red # puts red attribute in local var
 red = 1.1*red # increase by 10%
 red = int(round(red,0)) # convert to closest int
 rgb.red = min(255,red) # cannot go over 255
 # Do the others in one line
 rgb.green = min(255,int(round(1.1*rgb.green,0)))
 rgb.blue = min(255,int(round(1.1*rgb.blue,0)))

10/9/24

Procedure:
no return

Another Example

• Class: Length
§ Constructor function: Length(ft,in)
§ Remember constructor is just a function that

gives us back a mutable object of that type
§ Attributes:

10/9/24

Attribute Invariant
feet int, non-negative, = 12 in
inches int, within range 0..11

Function that Does Not Modify Object

def difference(len1,len2):
 """Returns: Difference between len1 and len2
 Result is returned in inches
 Parameter len1: the first length
 Precondition: len1 is a length object longer than len2
 Parameter len2: the second length
 Precondition: len2 is a length object shorter than len1"""
 pass # implement me

10/9/24

Function that Does Not Modify Object

def difference(len1,len2):
 """Returns: Difference between len1 and len2
 Result is returned in inches
 Parameter len1: the first length
 Parameter len2: the second length
 Precondition: len2 is a length object shorter than len1"""
 feetdif = (len1.feet-len2.feet)*12
 inchdif = len1.inches-len2.inches # may be negative
 return feetdif+inchdif

10/9/24

What is on the Exam?

• String slicing functions (A1)
• Call frames and the call stack (A2)
• Functions on mutable objects (A3)
• Testing and debugging (Lab 6 and 10)

§ Coming up with test cases
§ Tracing program flow
§ Understanding assert statements

• Short Answer (Terminology)
10/9/24

Picking Test Cases

def pigify(w):
 """Returns: copy of w converted to Pig Latin
 'y' is a vowel if it is not the first letter
 If word begins with a vowel, append 'hay'
 If word starts with 'q', assume followed by 'u';
 move 'qu' to the end, and append 'ay'
 If word begins with a consonant, move all
 consonants up to first vowel to end and add 'ay'
 Parameter w: the word to translate
 Precondition: w contains only (lowercase) letters"""
10/9/24

Picking Test Cases

def pigify(w):
 """Returns: copy of w converted to Pig Latin"""
 …
• Test Cases (Determined by the rules):

§ In: 'are', Out: 'arehay’ (Starts with vowel)
§ In: 'quiet', Out: 'ietquay' (Starts with qu)
§ In: 'ship', Out: 'ipshay' (Starts with consonant(s))
§ In: 'bzzz', Out: 'bzzzay' (All consonants)
§ In: 'yield', Out: 'ieldyay' (y as consonant)
§ In: 'byline', Out: 'ylinebay' (y as vowel)

10/9/24

Picking Test Cases

def pigify(w):
 """Returns: copy of w converted to Pig Latin"""
 …
• Test Cases (Determined by the rules):

§ In: 'are', Out: 'arehay’ (Starts with vowel)
§ In: 'quiet', Out: 'ietquay' (Starts with qu)
§ In: 'ship', Out: 'ipshay' (Starts with consonant(s))
§ In: 'bzzz', Out: 'bzzzay' (All consonants)
§ In: 'yield', Out: 'ieldyay' (y as consonant)
§ In: 'byline', Out: 'ylinebay' (y as vowel)

10/9/24

Do not forget
the quotes!

Debugging Example

def replace_first(word,a,b):
 """Returns: a copy with FIRST instance of a replaced by b
 Example: replace_first('crane','a','o') returns 'crone'
 Example: replace_first('poll','l','o') returns 'pool'
 Parameter word: The string to copy and replace
 Precondition: word is a string
 Parameter a: The substring to find in word
 Precondition: a is a valid substring of word
 Parameter b: The substring to use in place of a
 Precondition: b is a string"""

10/9/24

Debugging Example

def replace_first(word,a,b):
 """Returns: a copy with
 FIRST a replaced by b"""
 pos = word.rfind(a)
 print(pos)
 before = word[:pos]
 print(before)
 after = word[pos+1:]
 print(after)
 result = before+b+after
 print(result)
 return result

>>> replace_first('poll', 'l', 'o')
3
pol

polo
'polo'
>>> replace_first('askew', 'sk', 'ch')
1
a
kew
achkew
'achkew'

Identify the bug(s)
in this function.

10/9/24

Debugging Example

def replace_first(word,a,b):
 """Returns: a copy with
 FIRST a replaced by b"""
 pos = word.rfind(a)
 print(pos)
 before = word[:pos]
 print(before)
 after = word[pos+1:]
 print(after)
 result = before+b+after
 print(result)
 return result

>>> replace_first('poll', 'l', 'o')
3
pol

polo
'polo'
>>> replace_first('askew', 'sk', 'ch')
1
a
kew
achkew
'achkew'

10/9/24

Unexpected!

Debugging Example

def replace_first(word,a,b):
 """Returns: a copy with
 FIRST a replaced by b"""
 pos = word.find(a)
 print(pos)
 before = word[:pos]
 print(before)
 after = word[pos+1:]
 print(after)
 result = before+b+after
 print(result)
 return result

>>> replace_first('poll', 'l', 'o')
3
pol

polo
'polo'
>>> replace_first('askew', 'sk', 'ch')
1
a
kew
achkew
'achkew'

10/9/24

Debugging Example

def replace_first(word,a,b):
 """Returns: a copy with
 FIRST a replaced by b"""
 pos = word.find(a)
 print(pos)
 before = word[:pos]
 print(before)
 after = word[pos+1:]
 print(after)
 result = before+b+after
 print(result)
 return result

>>> replace_first('poll', 'l', 'o')
3
pol

polo
'polo'
>>> replace_first('askew', 'sk', 'ch')
1
a
kew
achkew
'achkew'

10/9/24

Unexpected!

Debugging Example

def replace_first(word,a,b):
 """Returns: a copy with
 FIRST a replaced by b"""
 pos = word.find(a)
 print(pos)
 before = word[:pos]
 print(before)
 after = word[pos+len(a):]
 print(after)
 result = before+b+after
 print(result)
 return result

>>> replace_first('poll', 'l', 'o')
3
pol

polo
'polo'
>>> replace_first('askew', 'sk', 'ch')
1
a
kew
achkew
'achkew'

10/9/24

What is on the Exam?

• String slicing functions (A1)
• Call frames and the call stack (A2)
• Functions on mutable objects (A3)
• Testing and debugging (Labs 6 and 10)
• Short Answer (Terminology)

§ See the study guide
§ Look at the lecture slides
§ Read relevant book chapters

In that order

10/9/24

Open to Questions

10/9/24

Good Luck!

10/9/24

