
CS 1110 Prelim 1 Solutions, March 2024

1. [10 points] Strings. Implement the following function. Hint: see rfind on the reference sheet.

def inside_markers(text, marker):

"""

Returns: the substring of `text` inside the 1st and last instance of `marker`

If the marker exists only once within `text`, returns all of `text`

Preconditions

text [str]: contains at least 1 instance of `marker`

marker [str]: has length AT LEAST 1 (see examples)

Examples:

inside_markers("ab+c+d+e+f+g", "+") returns "c+d+e+f"

inside_markers("ab++c++d++e++f+g", "++") returns "c++d++e"

inside_markers("hello world", " ") returns "hello world"

inside_markers("blah blah", "a") returns "h bl"

inside_markers("blah blah blah blah", "blah") returns " blah blah "

"""

if text.count(marker) == 1:

return text

pad = len(marker)

start_index = text.find(marker) + pad

end_index = text.rfind(marker)

return text[start_index:end_index]

Alternate Solution

first = text.find(marker)

last = text.rfind(marker)

if first == last:

return text

else:

return text[first + len(marker): last]

2. [12 points] Lists. Implement the following function.

def outside_in(list1, list2):

"""

Given input lists `list1` and `list2`, removes the first and last elements

from `list1` and places them in the _middle_ of `list2` (the first element

goes before the last element). If `list2` has an odd length, the middle

element is REPLACED by the two elements from `list1` instead.

Does not return anything! Just modifies the input lists.

Remember: list1 is the identifier of a folder on the heap. you should

be modifying THAT folder on the heap, NOT re-assigning list1 the

value of a new identifier.

Examples:

outside_in([1, 2, 3, 4], [5, 6, 7, 8]) modifies the lists to be:

--> [2, 3], [5, 6, 1, 4, 7, 8]

outside_in(['apple', 'bee'], ['cat', 'DOG', 'egg']) modifies lists to be:

--> [], ['cat', 'apple', 'bee', 'egg']

outside_in(['first1', 'mid1', 'last1'], ['mid2']) modifies lists to be:

--> ['mid1'], ['first1', last1']

outside_in(['a', 1, True],[]) modifies the lists to be:

--> [1], ['a', True])

Preconditions: list1 and list2 are lists

list1 has length at least 2

"""

first = list1.pop(0)

last = list1.pop(-1)

list2len = len(list2)

list2_middle = list2len // 2

if list2len % 2 == 0:

list2.insert(list2_middle, first)

list2.insert(list2_middle + 1, last)

else:

list2[list2_middle] = first

list2.insert(list2_middle + 1, last)

Alternate Solution

l2len = len(list2)

first = list1.pop(0)

last = list1.pop(len(list1)-1)

l2mid = l2len // 2

if l2len % 2:

list2.pop(l2mid)

list2.insert(l2mid, last)

list2.insert(l2mid, first)

Page 2

3. [12 points] Test cases. Consider the following function specification, which an online horo-
scope provider might use when asking for a user’s birth date.

def is_valid_date(d):

""" Returns True if `d` is a valid date and False otherwise.

A valid date is a string in the format of 'MMDD'. The month (MM) must be a

2-digit number representing one of twelve possible months. The day (DD)

must be a 2-digit number representing the day of the month. Note that the

date must be one that exists. The leap date of Feburary 29 is valid.

Preconditions: `d` is a string containing only digits ('0'-'9')

"""

Here is an example of one set of sample inputs and an expected output:

Test Case Input m Expected Output / What the test covers:
return value

1 "1231" True a valid input (a string of the correct format
that also represents a date that exists)

2 "1310" False 13 is not a valid month

Provide three more conceptually distinct test cases. (Your cases should be distinct from each
other and from Test Cases 1-2.) Include a short statement (∼1 sentence) explaining what
situation your test cases cover.

Test Case Input m Expected Output / What the test covers:
return value

3 “0229” True edge case:
make sure it accepts leap date

4 “115” False wrong format,
not 4 digits

5 “1241” False date does not exist
41 is not a valid day

Also acceptable: “0230” , False, date does not exist. there is no February 30th

Not acceptable: violating the precondition. Example: 125, an int, is not acceptable

Page 3

4. Drawing Time!

(a) [14 points] Simulate running the code below (which runs to completion without errors)
until Python executes line 21 and reaches the comment # ! STOP SIMULATION HERE !.
At the stopping point, the instruction counter should have the value 23. Draw the memory
diagram as shown in class and for A2. Remember there are 4 possible “regions” in which
you might draw program elements: Global Space, Call Stack, Heap, or Monitor.
(The first 3 are regions in memory, the last one is something that can be observed by a
user.) Make sure you label whatever you draw so that it is clear which region your drawn
components belong to. As usual, do not draw the objects/folders for function definitions.
Also, do not draw a call frame for print().

1 def sell(X, amt, bal):

2 b2 = 10

3 fee = add_fee(b2, amt, bal, b1)

4 return X + amt - fee

5 def trade(X, Y):

6 b1 = X + Y

7 if X < Y:

8 b3 = 20

9 elif X > Y:

10 b3 = 40

11 bal = sell(b1, b2, b3)

13 def add_fee(bal, amt, rate1, rate2):

14 fee = b2

15 if amt > 100 or balance > 10000:

16 fee = fee + 100

17 elif amt > 50:

18 fee = fee - 100

19 else:

20 fee = 5

21 print(fee)

22 # ! STOP SIMULATION HERE!

23 return fee

24 b1 = 150

25 b2 = 300

26 trade(b2, b1)

Page 4

(b) [2 points] Take a closer look at the function sell. It is possible to give sell an argument
for the parameter X that makes Python throw an Error while executing one of the lines of
sell (lines 2-4). Provide a first argument to sell that would make this happen.

sell(____________ ,)

The way to make Python throw an error while executing sell is to give X a value with a
type that cannot be added to amt on line 4. Example: ’hello’.

Not acceptable: something that would make Python throw an error when the argument
is evaluated on line 11.

(c) [2 points] Take a closer look at the function add fee. It is possible to give add fee four
int arguments that make Python throw an Error while executing one of the lines of
add fee (lines 14-23). Provide four integer arguments that would make this happen.

add_fee(____________ , ____________ , ____________ , ____________)

The way to make Python throw an error while executing add fee is to give amt (the second
argument) a value less than or equal to 100. This way, on line 15, the expression amt >

100 will evaluate to False and so the code balance > 10000 be evaluated. At this point,
Python throws an error because there is no such variable balance. The concept here is
short circuit evaluation (from the lab).

(d) [2 points] Take a closer look at the function trade. It is possible to give trade two int

arguments that make Python throw an Error while executing one of the lines of trade

(lines 6-11). Provide two integer arguments that would make this happen.

trade(____________ , ____________)

The way to make Python throw an error while executing trade is to give values for X and
Y that are equal. If so, neither line 8 nor line 10 will be executed. This means b3 will not
be created. This will make Python throw an error when executing line 11. See the lecture
notes on conditionals about making sure variables are created across all possible clauses
in cascading if-elif-else statements.

Page 5

5. Objects. You may want to look at part (b) as you work through part (a). In particular,
drawing the state of memory after the first line of code may help you work on part (a).

Objects of class Library have 3 attributes:

• shelf [list or None]: unique int IDs of books available in the Library

• cap [int]: maximum number of books that can be stored in the library’s bookshelf

• accept [boolean]: whether the library can store more books in the bookshelf

A call of the form Library() returns the identifier of a new Library object in an “initial
state”: shelf has the value None, cap has the value 0, and accept has the value False.

(a) [6 points] Implement the following function according to its specification.

def open_library(lib, books, c):

""" Assigns Library `lib` attributes as follows:

- shelf: set to a new list containing the first `c` IDs in `books`

- cap: set to `c`

- accept: set to True if the shelf has room for more books

Preconditions: lib [Library]: a Library object in an "initial state"

books [list]: a non-empty list of book IDs (ints)

c [int]: a positive number

the function modifies `lib`, does not modify `books`, returns nothing

Examples:

after calling open_library(lib1, [0, 1, 2, 3, 4], 8),

lib1 should have the attributes:

- shelf is a list with elements 0, 1, 2, 3, 4

- cap is 8

- accept is True

after calling open_library(lib2, [100, 3, 7, 98, 34, 2, 45], 5),

lib2 should have the attributes:

- shelf is a list with elements 100, 3, 7, 98, 34

- cap is 5

- accept is False """

lib.shelf = books[:c] # works even if c is larger than len

lib.cap = c

lib.accept = c > len(books)

Alternate Solution

lib.shelf = books[:min(len(books), c)]

lib.cap = c

if c > len(books):

lib.accept = True

else:

lib.accept = False

Page 6

(b) [10 points] Assume the class Library and the function open library are accessible within
the given code. Draw the memory diagram (as shown in class and for A2) after the
following lines of code have been executed. Remember there are 4 possible “regions”
in which you might draw program elements: Global Space, Call Stack, Heap, or
Monitor. (The first 3 are regions in memory, the last one is something that can be
observed by a user.) However, do not draw any call frames. Make sure you label
whatever you draw so that it is clear which region your drawn components belong to.

Note: even if you did not complete the previous part, you can still do this part based on
what the functions Library() and open library() should do. Your drawings may even
help you complete part (a) if you “see” what your code should be doing.)

my_lib = Library()

ids = [8,6,2]

open_library(my_lib, ids, 4)

Page 7

(c) [10 points] Implement the following function (which simulates someone borrowing a book
from the library) according to its specification:

def borrow(lib, id):

"""

Given a object `lib` and int `id`, a successful borrow:

Moves `id` out of `lib`'s bookshelf

Updates accept accordingly

Returns True (to indicate success)

One situation would prevent a successful borrowing:

`id` might _not_ be on `lib`'s shelf

The return value should reflect the failure

Preconditions:

lib [Library]: a Library object. `lib` could be in the "initial state"

(newly constructed) or it could be open (having already

had open_library called for it)

id [int]: an integer representing the ID of a book to borrow

"""

if lib.shelf == None:

return False

if id in lib.shelf:

lib.shelf.remove(id)

lib.accept = (lib.cap > len(lib.shelf))

return True

return False

Alternate Solution #1:

if lib.shelf == None or not id in lib.shelf:

return False

lib.shelf.remove(id)

lib.accept = True

return True

Alternate Solution #2:

if lib.shelf == None:

return False

if id in lib.shelf:

lib.shelf.remove(id)

if lib.cap > len(lib.shelf):

lib.accept = True

return True

return False

Page 8

6. [8 points] Understanding Python. Consider the Point3 class as it was defined in lecture.
A call to the constructor of the form Point3(1,2,3) will set attributes x, y, and z to have
values 1, 2, and 3, respectively. Assume the class Point3 is accessible to the code below. What
is printed out when each code snippet below is executed? Write ERROR as shorthand for any
error output.

1 p1 = Point3(8,9,10)

2 p1 = Point3(2,4,6)

3 p2 = p1

4 p2.x = 10

5 print(print(p1.x))

Your Answer:

Correct Answer: 10
None

1 p1 = Point3(1,2,3)

2 p2 = Point3(4,5,6)

3 h = [p2,p1,p1,p2]

4 h[1].x = h[0].z

5 h[3].x = h[2].x

6 h[0].x = h[1].y

7 print(h[3].x)

Your Answer:

Correct Answer: 2

1 p1 = Point3(5,2,8)

2 p2 = Point3(1,4,7)

3 p1.x = p2.x

4 p2.y = p1.y

5 p2 = p1.x

6 print(p2.y)

Your Answer:

Correct Answer: ERROR

1 p1 = Point3(1,2,3)

2 p2 = Point3(4,5,6)

3 h = [p1,p2]

4 a = h[h[0].x].y

5 print(a)

Your Answer:

Correct Answer: 5

Page 9

