
CS 1110 Prelim 1 Solutions, March 2023

1. [8 points] Strings. Implement the following function.

def before_first_inclusive(text, marker):

"""

Returns: substring of `text` up to and including the first

occurrence of `marker`.

If `marker` is the empty string then return all of `text`

Examples:

before_first_inclusive("abc", "c") --> "abc"

before_first_inclusive("abc", "abc") --> "abc"

before_first_inclusive("abcabc", "abc") --> "abc"

before_first_inclusive("abc", "a") --> "a"

before_first_inclusive("a", "a") --> "a"

before_first_inclusive("abba", "b") --> "ab"

before_first_inclusive("abba", "") --> "abba"

Preconditions:

text: non-empty string containing at least one instance of `marker`

marker: string found in `text`

"""

if marker == "":

return text

marker_len = len(marker)

marker_ind = text.index(marker)

return text[:marker_ind + marker_len]

2. [12 points] Lists. Implement the following function. Hint: see reverse on the reference sheet.

def mirror_me(mylist, i):

"""

Given an input list `mylist` and an index `i`, returns a new list which

is a copy of `mylist` except all elements after index `i` are reversed.

`mylist` should not be modified

Examples:

mirror_me([1,2,3,4,5,6], 2) returns [1,2,3,6,5,4]

mirror_me([9,2,1,8,4], 4) returns [9,2,1,8,4]

mirror_me([5,8], 1) returns [5,8]

mirror_me([5], 0) returns [5]

mirror_me([], 0) returns []

Preconditions: 0 <= i < len(mylist)

mylist is not None but could be empty

"""

STUDENTS: loops are NOT ALLOWED (or needed)

STUDENTS: conditionals (if-else) are NOT ALLOWED (or needed)

begin = mylist[:i+1]

end = mylist[i+1:]

end.reverse()

return begin + end

Page 2

3. [10 points] Test cases. Consider the following function specification, which one might use if
to transmit messages one character at a time.

def is_valid_message(m):

""" Returns True if `m` is a valid message and False otherwise.

A valid message is a list whose elements consist of only characters

(strings of length one). Additionally, a message must contain

at least two elements in order to be valid.

Pre-condition: m is a list

"""

Here is an example of one set of sample inputs and an expected output:

Test Case Input m Expected Output / return value

1 ["n","o","","d","i","c","e"] False

Test Case 1 covers the following situation:

m is not valid because it has an element that is a string whose length is not 1.

Complete the table for three more conceptually distinct test cases, using the same format.
(Your cases should be distinct from each other and from Test Case 1.)

Test Case Input m Expected Output / return value

2 True

3 False

4 False

Include a short statement (1-2 sentences) explaining what situation Test Cases 3 and 4 cover.

Test Case 3 covers the following situation:

Test Case 4 covers the following situation:

Test Case 2 needs to be a valid message. For example m: ["d","i","c","e"]

Test Cases 3 & 4 need to be invalid messages covering cases distinct from each other and Test
Case 1. Some possibilities:

(1) m: [] or ["g"] tests the case where the message has fewer than 2 elements

(2) m: ["a", "b", 6] tests the case where the message has an element that is not a string

An example of an unacceptable Test Case would be m: "hello" because the precondition
that m is a list is not met.

Page 3

4. [12 points] Understanding Python. For each snippet of code below, at most 3 lines will be
printed. What are these three lines? Put a single letter (A-E) in each box.

1 def funclass(s):

2 print(s)

3 s = 'CS1110'

4 print(s)

5

6 s = "python"

7 funclass(s)

8 print(s)

Your Answer:

line 1:

line 2:

line 3:

Correct Answer: ABA

1 def funclass(s):

2 print(s)

3 s = 'CS1110'

4 return s

5

6 s = "python"

7 s = funclass(print(s))

8 print(s)

Your Answer:

line 1:

line 2:

line 3:

Correct Answer: ACB

1 def funclass():

2 s = 'CS1110'

3 print(s)

4 return s

5

6 s = "python"

7 print(funclass())

8 print(s)

Your Answer:

line 1:

line 2:

line 3:

Correct Answer: BBA

1 def funclass():

2 s = 'CS1110'

3 print(s)

4

5 s = "python"

6 print(s)

7 s = funclass()

8 print(s)

Your Answer:

line 1:

line 2:

line 3:

Correct Answer: ABC

CHOICES:

(A) python

(B) CS1110

(C) None

(D) Error

(E) Nothing printed

due to an Error in a previous box.

Page 4

5. [28 points] More widgets, Edna! Store is an object with 3 attributes: name, widgets, and
sister. A call of the form Store(n,w,s) creates a new Store object with attribute name set
to n, widgets set to w, and sister set to s. Assume the class Store is accessible within the
given code. Simulate running all the code. Draw the memory diagram as seen in class and
Assignment 2. (As usual, do not draw the objects/folders for imported modules or for function
definitions.) Pay attention to what goes in the Global Space / Call Stack / Heap.

Global Space Call Stack Heap

1 def borrow(num, og):

2 sister = og.sister

3 mine = og.widgets

4 hers = sister.widgets

5 if mine + hers >= num:

6 hers -= num - mine

7 og.widgets = 0

8 return True

9 return False

10 def make_sale(n, s):

11 if s.widgets >= n:

12 s.widgets -= n

13 return True

14 elif s.sister is not None:

15 return borrow(n, s)

16 else:

17 return False

18 s1 = Store("Getty's", 15, None)

19 s2 = Store("WonderPetz", 25, s1)

20 s1.sister = s2

21 success = make_sale(30, s1)

Page 5

6. Object-ively speaking. Objects of class Warehouse have 4 attributes:

• pending [int list]: unique ids of packages not yet delivered to the warehouse

• delivered [int list]: unique ids of packages that have been delivered to the warehouse

• goal [int]: the number of deliveries this warehouse will try to complete

• met goal [boolean]: whether warehouse has delivered at least goal # of packages

(a) [8 points] Implement the following function according to its specification:

def prep_warehouse(w, g, n_ids, packages):

"""

Initializes Warehouse `w` attributes:

- pending: set as a list of the last `n_ids` in the `packages` list

- delivered: set as the empty list

- goal: set to `g`

- met_goal: set to False

`packages` should not be modified

Examples:

prep_warehouse(w, 2, 3, [3,5,8,13,5,4]) --> w should have the attributes:

pending is the list [13,5,4]

delivered is the empty list

goal is 2

met_goal is False

prep_warehouse(w, 7, 1, [1,9,4,3]) --> w should have the attributes:

pending is the list [3]

delivered is the empty list

goal is 7

met_goal is False

Preconditions: n_ids: a positive integer

packages: an int list with >= n_ids elements

"""

STUDENTS: loops are NOT ALLOWED (or needed)

w.pending = packages[len(packages)-n_ids:] # or [-n_ids:]

w.delivered = []

w.goal = g

w.met_goal = False

Page 6

(b) [12 points] Implement the following function (which simulates the delivery of a package
to the warehouse) according to its specification:

def deliver_package(w, id):

"""

Given a warehouse `w` and integer `id`, a successful delivery:

Moves `id` from w's pending list to the end of w's delivered list

Sets met_goal to True only if `w` has had at least as many

deliveries as its goal

returns True (to indicate the delivery was successful)

Two situations would prevent a successful delivery:

(1) `id` might _not_ be on w's pending list.

In this case, return False. (delivery failed)

(2) `id` might _already_ be on w's delivered list.

In this case, return False (deliver failed)

If a delivery fails, none of w's attributes should be modified.

Preconditions:

w: a warehouse with attributes pending, delivered, goal, met_goal

id: a positive integer

"""

if id in w.pending and id not in w.delivered:

w.pending.remove(id)

w.delivered.append(id)

w.met_goal = (len(w.delivered) >= w.goal)

return True

return False

Alternate Solution #1:

if id not in w.pending:

return False

if id in w.delivered:

return False

w.pending.remove(id)

w.delivered.append(id)

if (len(w.delivered) >= w.goal):

w.met_goal = True

return True

Alternate Solution #2:

pending_i = w.pending.find(id)

if (pending_i == -1):

return False

if (w.delivered.count(id) > 0):

Page 7

return False

list slicing!

w.pending = w.pending[:pending_i]+w.pending[pending_i + 1:]

w.delivered.append(id)

if (len(w.delivered) >= w.goal):

w.met_goal = True

else: # you didn't have to set False, but fine to have done this

w.met_goal = False

return True

Page 8

