
CS 1110 Regular Prelim 1 Solutions March 2022

1. [8 points] Strings. Implement the following function.

def peel(markers, text):

"""Returns a new string where the `markers` have been removed from the

beginning and end of `text`

Examples:

peel("()", "(abc)") --> "abc"

peel("()", "(1(+)1)") --> "1(+)1"

peel("<()>", "<(>.<)>") --> ">.<"

peel("ab", "ab") --> ""

Preconditions:

markers: string of even length (0 is allowed)

text: any-length string that starts w/ 1st half of `markers`, ends w/ 2nd half.

"""

REMINDER: in a slice expression like s[n:m], n and m must be ints, not floats

marker_len = len(markers)//2

text_len = len(text)

This solution avoids using rindex/rfind by subtracting from len(text).

return text[marker_len:text_len-marker_len]

Remember that because / is a float operator, the result of x / 2 will be a float even if x is an
even int:

>>> test = ['a', 'b']

>>> len(test)

2

>>> len(test)/2

1.0

>>> test[len(test)/2]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: list indices must be integers or slices, not float

So, one must use either // or do an explicit cast to an int for this question.

Alternate solutions:

def peel2(markers, text):

m1= markers[:len(markers) //2]

m2 = markers[len(markers)//2:]

start_inside = text.index(m1)+len(m1)

end_inside = text.rindex(m2)-1

return text[start_inside:end_inside+1]

Another alternate solution

def peel3(markers, text):

m1= markers[:len(markers) //2]

m2 = markers[len(markers)//2:]

start_inside = text.index(m1)+len(m1)

start_outside = text.rindex(m2)

return text[start_inside:start_outside]

Note: it does not suffice to set start outside = text.index(m2, start inside) because
there could be occurrences of the second marker(s) before the final occurrence, as happens
with the second test case we gave.

Page 2

2. [8 points] Lists. Implement the following function.

def swap2(a_list, j, k):

"""Modifies a_list by swapping the two elements of a_list starting

at index j with the 2 entries of a_list starting at index k.

Examples:

swap2([100, 101, 102, 103, 104, 105, 106, 107, 108, 109], 1, 6)

changes a_list to

[100, 106, 107, 103, 104, 105, 101, 102, 108, 109]

-------- --------

swap2([100, 101, 102, 103, 104, 105, 106, 107, 108, 109], 0, 4)

changes a_list to

[104, 105, 102, 103, 100, 101, 106, 107, 108, 109]

-------- --------

swap2(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], 0, 4)

changes a_list to

['e', 'f', 'c', 'd', 'a', 'b', 'g', 'h', 'i', 'j']

-------- --------

Preconditions:

j and k are valid indices (positive, < len(a_list))

j + 2 <= k (the elements you're swapping don't overlap in a_list)

k + 2 <= len(a_list) """

STUDENTS: loops are NOT ALLOWED (or needed)

temp1 = a_list[j]

temp2 = a_list[j+1]

a_list[j] = a_list[k]

a_list[j+1] = a_list[k+1]

a_list[k] = temp1

a_list[k+1] = temp2

Page 3

3. Some truths are self evident. Some are learned in CS 1110.

(a) [2 points] True or False? The drawing below accurately depicts the value of variable x
in Global Memory after the code below is executed in Python:

1 def double_x(input):

2 return input * 2

3

4 x = 5

5 x = double_x(x)

Circle One:

True False
Correct Answer: True

(b) [2 points] True or False? The drawing below accurately depicts the value of variable x
in Global Memory after the code below is executed in Python:

1 def double_x(input):

2 x = input * 2

3

4 x = 5

5 double_x(x)

Circle One:

True False
Correct Answer: False. Global x
stays 5.

(c) [2 points] True or False? The drawing below accurately depicts the value of variable x
in Global Memory after the code below is executed in Python:

1 def double_x(input):

2 x = input * 2

3 print(str(x))

4

5 x = 5

6 double_x(x)

Circle One:

True False
Correct Answer: False. Global x
stays 5.

(d) [2 points] True or False? The drawing below accurately depicts the value of variable x
in Global Memory after the code below is executed in Python:

1 def double_x(input):

2 x = input * 2

3 print(str(x))

4

5 x = 5

6 x = double_x(x)

Circle One:

True False
Correct Answer: False. x would
be None

Page 4

4. [24 points] Time for dinner! Place is an object with 3 attributes: spoon, fork, and knife.
A call of the form Place(s,f,k) creates a new Place object with attribute spoon set to s,
fork set to f, and knife set to k. Assume that class Place is accessible within the given
code. Simulate running all 27 lines of code and draw the memory diagram as seen in class and
Assignment 2.

Global Space Heap Call Stack

1 def soup(p):

2 p.spoon = p.spoon + 1

3 drawer.spoon = drawer.spoon - 1

4 def salad(p):

5 p.fork = p.fork + 1

6 drawer.fork = drawer.fork - 1

7 p2.knife = p2.knife + 2

8 drawer.knife = drawer.knife - 1

9 def dinner (p, with_soup, with_salad):

10 if with_soup:

11 soup(p)

12 if with_salad:

13 salad(p)

14 def dessert(p, name):

15 if name == "ice cream":

16 n_spoons = 2

17 else:

18 n_spoons = 0

19 p.fork = p.fork + 1

20 p.spoon = p.spoon + n_spoons

21 return n_spoons

22 p1 = Place(1, 2, 0)

23 p2 = Place(1, 2, 0)

24 drawer = Place(6, 4, 8)

25 dinner(p1, False, True)

26 n_spoons = dessert(p2, "ice cream")

27 drawer.spoon = drawer.spoon - n_spoons

Page 5

5. [8 points] Testing, Testing, 1, 2, 3, Testing!

Consider the following function specification, which you might use if you want to distribute the
cost of dinner amongst you and your friends.

def batch_withdraw(balance_list, withdraw_amount):

"""balance_list is a list of floats representing the balances of

multiple bank accounts

Pre-condition:

withdraw_amount is a float with value >= 0.

Return a new list of the same length as balance_list, where every

value is the corresponding value in balance_list minus

withdraw_amount. If any value in balance_list is less than

withdraw_amount (i.e., there is not enough in the account to withdraw),

return the empty list. """

Here is an example of one set of sample inputs and an expected output:

Inputs Expected Output

Test Case balance list withdraw amount return value

1 [20.0, 30.0, 40.0, 50.0] 10.0 [10.0, 20.0, 30.0, 40.0]

Provide two more conceptually distinct test cases, using the same format. Include a short
statement (1-2 sentences) explaining what situation each of your test cases represents.

Test Case balance list withdraw amount return value

2

Test Case 2 covers the following situation:

Test Case balance list withdraw amount return value

3

Test Case 3 covers the following situation:

Some possibilities:

balance list: [70.0, 10.0, 80.0], withdraw amount: 40.0, return value: []
tests case where one value in the balance list is < the withdraw amount and so should return
the empty list

balance list: [30.0], withdraw amount: 30.0, return value: [0.0]
tests case where value in the balance list is equalt to the withdraw amount and so should
be zeroed out (but not return empty list)

balance list: [], withdraw amount: 20.0, return value: []
tests case where balance list is empty and so should return the empty list

Page 6

6. The eyes have it. Assume objects of class Point have two attributes: x and y; both are ints.
Assume objects of new class Face have three Point attributes: left eye, and right eye, and
nose. Face attributes should have the following relationships to be considered proportionate:

• left eye and right eye have the same y attribute values (they are the same height)

• left eye and right eye are centered across the y-axis (left eye’s x attribute is negative
and right eye’s x attribute is positive)

• nose always sits on the y-axis (x=0)

• nose is always lower than the eyes by the distance that the eyes are from the y-axis.
Example: if the eyes are 2 units from the y-axis, the nose will be 2 units below the eyes.

(a) [6 points] Implement the following function.

def set_face(f, right_x, right_y):

"""Given ints right_x and right_y (which are the desired values for the

x and y coordinates of the right eye of Face f), sets the left_eye,

right_eye and nose attributes of Face f, so that Face f is proportionate.

Precondition: right_x and right_y are non-negative ints. """

Reminder: to negate the variable n in Python, you simply write -n.

f.right_eye.x = right_x

f.right_eye.y = right_y

f.left_eye.x = -right_x

f.left_eye.y = right_y

f.nose.x = 0

f.nose.y = right_y - right_x

Alternate solution

def set_face2(f, right_x, right_y):

f.right_eye.x = right_x

f.right_eye.y = right_y

f.left_eye.x = -f.right_eye._x

f.left_eye.y = f.right_eye.y

f.nose.x = 0

f.nose.y = right_y - right_x

Page 7

(b) [9 points] Implement the following function.

def is_proportionate(f):

"""Return True if the locations of the eyes and nose of Face f make the face

`proportionate`, based on the definition at the beginning of this question.

If any of the x,y attributes of the elements of Face f are not in proportion,

return False.

"""

check eyes

if f.right_eye.x != -f.left_eye.x:

return False

if f.right_eye.y != f.left_eye.y:

return False

check nose

if f.nose.x != 0:

return False

if (f.right_eye.y - f.right_eye.x) != f.nose.y:

return False

return True

END REMOVE

BEGIN REMOVE

Alternate solution

return (f.right_eye.x == -f.left_eye.x and

f.right_eye.y == f.left_eye.y and

f.nose.x == 0 and

f.nose.y == f.right_eye.y - f.right_eye.x)

(c) [6 points] Implement the following function.

def eyes_wider(first, second):

""" Return True if the eyes of Face `first` are wider apart than

the eyes of Face `second`. Otherwise return False.

Also return False if either face is not proportionate.

"""

if not is_proportionate(first) or not is_proportionate(second):

return False

return first.right_eye.x > second.right_eye.x

END REMOVE

BEGIN REMOVE

Alternate solution

if is_proportionate(first) and is_proportionate(second):

return first.right_eye.x > second.right_eye.x

else:

return False

Page 8

