
Lists and Sequences

Review 4

Create list of length
4 with all zeroes

Assign 5 to element 2
and –4 to element 0

Overview of List Syntax

• x = [0, 0, 0, 0]

• x.append(2)

• 3 in x

• x[2] = 5
• x[0] = –4

• k = 3
• x[k] = 2 * x[0]
• x[k–2] = 6

0
1
2
3

4300112

0
0
0
0

4300112x

3k

-4
6
5
-8

✗

✗
✗
✗
24

Append 2 to end of
list x (now length 5)

Assign -8 to x[3]
and 6 to x[1]

Evaluates to False
(3 not in x)

Lists vs. Tuples vs. Strings
• Creation

x = [a1, a2, a3, …]
Can contain anything

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is an element

• Can concatenate
y = x + [1, 2]
Makes a new list

• Is mutable
x.append(5)

• Creation
x = 'Hello'
Only contains chars

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is a substring

• Can concatenate
y = x + ' World'
Makes a new string

• Is not mutable

• Creation
x = (a1, a2, a3, …)
Can contain anything

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is an element

• Can concatenate
y = x + (1, 2)
Makes a new tuple

• Is not mutable

Modified Question 4 from Fall 2011

Each elements in the list scores contains the number of students
who received score i on a test. For example, if 30 students got 85,
then scores[85] is 30.Write the body of function histogram, which
returns a histogram as a list of strings. (You need not write loop
invariants.) For example, if scores = [7, 0, 4, 3, 2, 0, …] then the
first elements of the resulting string list are:

'00 *******'
'01 '
'02 ****'
'03 ***'
'04 *'
'05 '

Modified Question 4 from Fall 2011

def histogram(scores):
"""Return a list of Strings (call it s) in which each s[i] contains:

(1) i, as a two-digit integer (with leading zeros if necessary)
(2) a blank,
(3) n asterisks '*', where n is scores[i].

Precondition: scores is a list of nonnegative integers, len(scores) < 100"""
IMPLEMENT ME

Modified Question 4 from Fall 2011

def histogram(scores):
"""Return a list of Strings (call it s) in which each s[i] contains:

(1) i, as a two-digit integer (with leading zeros if necessary)
(2) a blank,
(3) n asterisks '*', where n is scores[i].

Precondition: scores is a list of nonnegative integers, len(scores) < 100"""
s = [] # List to contain the result.
for i in range(len(scores)): # Need the value i, not the elements of scores

Row is the string for this row
row = str(scores[i])+' ' if scores[0] > 10 else '0'+str(scores[i])+' '
for n in range(scores[i]): # Loop over number of elements in scores[i]

row = row+'*' # Add another * to the row
s.append(row) # Add row to the list

return s

Overview of Two-Dimensional Lists

• Access value at row 3, col 2:

d[3][2]

• Assign value at row 3, col 2:

d[3][2] = 8

• An odd symmetry

§ Number of rows of d: len(d)

§ Number of cols in row r of d: len(d[r])

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0
1

4

2

3

How Multidimensional Lists are Stored

• b = [[9, 6, 4], [5, 7, 7]]

• b holds name of a one-dimensional list
§ Has len(b) elements
§ Its elements are (the names of) 1D lists

• b[i] holds the name of a one-dimensional list (of ints)
§ Has len(b[i]) elements

id2

9
6
4

id3

5
7
7

id1

id2
id3

id1b

9 6 4
5 7 7

Modified Question 4 from Fall 2010
Recall drawing GRectangles in A7. Write method placeSquares,
whose requirements appear below. It draws square bricks as
shown to the right and returns them as a 2d list of GRectangle

def placeSquares(self, m):
"""Create a list of m x m squares (GRectangle), as specified
below, adding the squares to the GUI, and return the list."""

Method Requirements:
§ There are m columns and rows of squares; precondition: 0 < m.
§ Each square has side length BRICK_SIDE; there is no space between them.
§ The bottom-left square is at the bottom-left corner (0,0) of the GUI.

Squares in columns and rows 0 and m-1 have color 'pink'
§ Inner squares have checkerboard pattern of 'red' and 'green', as shown

(bottom-left one is green; one next to it, red).

Modified Question 4 from Fall 2010
Recall drawing GRectangles in A7. Write method placeSquares,
whose requirements appear below. It draws square bricks as
shown to the right and returns them as a 2d list of GRectangle

def placeSquares(self, m):
"""Create a list of m x m squares (GRectangle), as specified
on last slide, adding them to the GUI, and return the list."""

API Reminders:
§ GRectangle has attributes pos (a 2 element tuple),

size (a 2 element tuple), fillcolor, and linecolor
§ You construct a GRectangle with keyword arguments:

GRectangle(pos=(0,0),size=(10,10),color='blue')
§ You add to the GUI with self.view.add(…)

def placeSquares(self, m):
"""Place the m x n Bricks, as requested on the exam and return the list"""
bricks = []; c = 0 # Make a new list to represent columns
while c < m: # Place col c of bricks

row = []; r = 0 # Make a new list to represent rows
while r < m:

color = 'red'
if r == 0 or r == m-1 or c == 0 or c == m-1:

color = 'pink'
elif r+c % 2 == 0:

color = 'green'
brick=GRectangle(pos=(r*BRICK_SIDE,c*BRICK_SIDE), fillcolor=color

size=(BRICK_SIDE,BRICK_SIDE), linecolor=color)
row.append(brick)
self.view.add(brick); r = r+1

bricks.append(row)
c= c+1

return bricks

Ragged Lists: Rows w/ Different Length

• b = [[17,13,19],[28,95]]

• To create a ragged list
• Create b as an empty list (b = [])
• Create each row as a list (r1 = [17,13,19]; r2 = [28,95])
• Append lists to b (b.append(r1); b.append(r2))

id2

17
13
19

id3

28
95

id1
id1b id2

id3
0

1
2

1 1
0

0

Modified Question 4 from Fall 2011
Someone messed up a method to create certain arrays for us. For example (and
this is only an example), they produced the array:

3 1 2 1 2 3
2 1 7 8 5 instead of 1 7 8 5 2
5 the array 5
6 8 8 6

Thus, they put the last value of each row at the beginning instead of the end.
Write a procedure that fixes this by rotating each row one position to the left;
each element is moved one position earlier, and the first element is placed in
the last position. Do not use recursion. DO NOT RETURN A VALUE.

def rotate(b):
"""Rotate each row one position to the left, as explained above.
Precondition: b is a list, might be ragged, and each row has >= 1 value"""

Modified Question 4 from Fall 2011
def rotate(b):

"""Rotate each row one position to the left, as explained on the previous slide.
Precondition: b is a list, might be ragged, and each row has >= 1 value"""
Process each row
for r in range(len(b)):

Remember the first element so we can put it at the end
first = b[r][0]
Start at second element and shift each to the left
for c in range(1,len(b[r])):

b[r][c-1]= b[r][c];
Put the first element at the end
b[r][len(b[r])–1]= first

Modified Question 4 from Fall 2011
def rotate(b):

"""Rotate each row one position to the left, as explained on the previous slide.
Precondition: b is a list, might be ragged, and each row has >= 1 value"""
Process each row
for r in range(len(b)):

Remember the first element so we can put it at the end
first = b[r][0]
Start at second element and shift each to the left
for c in range(1,len(b[r])):

b[r][c-1]= b[r][c];
Put the first element at the end
b[r][len(b[r])–1]= first

Watch this in the
Python Tutor

Question 6 from Fall 2016
def reduce(matrix,row,col):

""" Returns a copy of the matrix, missing the given row and column.
Precondition: matrix is a table of numbers, row is an index (int) for a row,
while col is an index (int) for a column"""

Question 6 from Fall 2016
def reduce(matrix,row,col):

""" Returns a copy of the matrix, missing the given row and column.
Precondition: matrix is a table of numbers, row is an index (int) for a row,
while col is an index (int) for a column"""
rows = len(matrix)
cols = len(matrix[0])
copy = [] # Accumulator for table
for r in range(rows):

if r != row:
copyrow = [] # Accumulator for row
for c in range(cols):

if c != col:
copyrow.append(matrix[r][c])

copy.append(copyrow)
return copy

Watch this in the
Python Tutor

