
CS 1110 Final Exam Solutions, May 2024

1. [10 points] Strings. Implement the following function. Do not use iteration in your solution.

def outside_markers(text, marker):

"""

Returns: a string found outside the first and last instance of `marker` in `text`

If `marker` is not found, return the entire string.

If `marker` is found only once, return the marker.

Preconditions

text [str]: a string with 0 or more instances of `marker`

marker [str]: a string of length 1

Examples:

outside_markers("ab+c+de+f++g", "+") returns "abg"

outside_markers("blah park", "a") returns "blrk"

outside_markers("xabcdefgx", "x") returns ""

outside_markers("hi my name is", "z") returns "hi my name is"

outside_markers("abcdef+ghijkl", "+") returns "+"

"""

n = text.count(marker)

if n == 0:

return text

elif n == 1:

return marker

first_i = text.find(marker)

last_i = text.rfind(marker)

outside = text[0:first_i] + text[last_i+1:]

return outside

Alternate Solution #1:

loc1 = text.find(marker)

loc2 = text.rfind(marker)

if loc1 == -1 and loc2 == -1:

return text

if loc1 == loc2:

return marker

return text[:loc1]+text[(loc2+1):]

Alternate Solution #2:

parts = text.split(marker)

if len(parts) == 1: # not found

return text

elif len(parts) == 2: # found once

return marker

else:

return parts[0] + parts[-1]

Page 2

2. [10 points] Blue Screen of Death. An image can be represented as a 2-dimensional (aka
“nested”) list of pixels. Each pixel can be represented as a list with three elements representing
a red, green, and blue value from 0 to 255. For example [0, 0, 0] is black, [255, 0, 0] is red,
and [255, 255, 255] is white. Implement the following function according to its specification.
You may only use Python taught in CS 1110. (No list comprehension allowed.)

def make_colored_image(width, height, r, g, b):

""" Returns: a 2d list representing an image of size `width` by `height`.

Each element in the image is a unique list with three elements, representing

a pixel with RGB values specified by parameters r, g, and b. The elements

representing GRB pixels in the 2d list should have unique identifiers (i.e.,

there should be multiple, distinct lists with three elements, not just one).

Examples:

make_colored_image(2,2,255,0,0) returns

[[[255, 0, 0], [255, 0, 0]], [[255, 0, 0], [255, 0, 0]]]

make_colored_image(1,3,128,128,0) returns

[[[128, 128, 0]], [[128, 128, 0]], [[128, 128, 0]]]

Preconditions:

width, height: int > 0

r, g, b: int >= 0 and <= 255 """

img = []

for i in range(height):

row = []

for j in range(width):

row.append([r,g,b])

img.append(row)

return img

Page 3

3. [10 points] Dictionaries. Implement this function according to its specification:

def add_unique(d, k, elem):

"""Given a dictionary `d` with values that are lists of elements,

this function adds `elem` to the list associated with key `k`.

If `elem` is already present in the list associated with key `k`,

this function does nothing.

Returns: Nothing

-- EXAMPLES --

parameters after the function ends, d will be:

d: {}

k: 'P' --> d: {'P': ['hi']}

elem: 'hi'

d: {'P': ['hi']}

k: 'P' --> d: {'P': ['hi']}

elem: 'hi'

d: {'P': ['hi']}

k: 'P' --> d: {'P': ['hi','bye']}

elem: 'bye'

d: {'P': ['hi','bye']}

k: 'U' --> d: {'P': ['hi','bye'],

elem: 'bye' 'U': ['bye'] }

Preconditions:

d is a dictionary

k is an acceptable dictionary key """

if k in d:

elems = d[k]

if elem not in elems:

elems.append(elem)

else:

d[k] = [elem]

Page 4

4. CurMu is a made-up language used to tell a computer on how to style text. Correct CurMu
always has the pattern: Xcccc@ and follows these rules:

1. The letter X at the beginning must be an uppercase letter. It represents a tag, like P for
plain, B for bold, I for italicized, or U for underline.

2. Following the tag, there is a non-empty sequence of characters (cccc) that should be
styled according to the tag. This sequence must not contain any capital letters or the @

symbol.

3. The styling designation for a sequence of characters ends with the @ symbol.

4. You can repeat this pattern multiple times in a text to apply different styles to different
sequences of characters. Every part of the text must be styled in some way, even if is just
plain. Each character or sequence of characters may only have 1 style applied to it.

Here are some examples of CurrMu and what the corresponding text should look like:

CurMu text What it the text should look like:

Pplain@ plain
Bbold!@ bold!
Iitalicize?@ italicize?
Pplain. @Bbold.. @Iitalicize. @Uunderline. @ plain. bold.. italicize. underline.
Pthis text is plain.@Bthis text is bold.@ this text is plain.this text is bold.
Bno! @Pi am @Inot@P looking at @Uyou.@ no! i am not looking at you.

(a) [1 point] To underline the word happy (i.e., happy), how do you write that in CurMu?

Correct Answer: Uhappy@

(b) [3 points] Which of the following are correct CurMu?

(A) UB_underline_and_bold@@

(B) Uitalicize?@

(C) plain text please@

(D) Uit's Mundy, baby!@

(E) I.?!@

(F) IB@

Circle all that apply: A B C D E F None

Correct Answer: B & E

Page 5

(c) [14 points] Implement the function below according to its specification. To receive full
credit, you must use the function add unique from the previous question. (Assume
you have imported a correct implementation of the function.)

def get_styles(text):

"""

Returns a dictionary that associates strings to their styles.

The key is a single letter tag (like 'P', 'B', 'U', 'I', etc.).

The value is a list of unique strings that should be styled by that tag.

Examples:

get_styles("Bno! @P i am @Inot @P looking at @Uyou.@")

returns {'B': ['no! '],

'P': [' i am ', ' looking at '],

'I': ['not '],

'U': ['you.']}

get_styles("Bno! i @Pam @Bnot!@Bnot!@")

returns {'B': ['no! i ', 'not!'],

'P': ['am '] }

Preconditions: `text` is correctly-formatted CurMu

"""

d = {}

key = text[0]

chars = ""

for i in range(1,len(text)):

c = text[i]

if c == '@':

add_elem_to_d(d, key, chars)

elif c.isupper():

key = c

chars = ""

else:

chars += c

return d

Page 6

Alternate Solution #1

key = ""

value = ""

d = {}

for char in text:

if char.isupper():

key = char

elif char == "@":

add_unique(d,key, value)

key = ""

value = ""

else:

value += char

return d

Alternate Solution #2

d = {}

curr_index = 0

while curr_index < len(text):

at_loc = text.find('@',curr_index)

word = text[curr_index+1:at_loc]

add_unique(d, text[curr_index], word)

curr_index = at_loc+1

return d

Alternate Solution #3

d = {}

tokens = text.split('@')[:-1]

for token in tokens:

style = token[0]

seq = token[1:]

add_unique(d, style, seq)

return d

Alternate Solution #4

d = {}

for i in range(len(text)):

if text[i].isupper():

index = text.find("@",i)

add_unique(d, text[i],text[i+1:index]

return d

Page 7

5. [14 points] Recursion. Consider a world in which there are only 2 eye colors and eye color is
a trait that skips every generation. A Person has a different color eyes from their parents, but
the same color eyes as their grandparents. Let Person be a class as defined below:

class Person:

"""An instance represents a human with an eye color and up to 2 parents.

Initially, eye_color is "unknown". After a family is created, eye_color is

assigned for the family by calling set_eye_color() from the root of the tree.

Instance attributes:

name [str] - unique non-empty name of a person

eye_color [str] - the color of the person's eyes or "unknown"

p1 [Person or None] - parent 1

p2 [Person or None] - parent 2

"""

Implement the method set eye color, which sets the eye colors for a family, as illustrated below:

Page 8

(Continued from previous page.)

Implement the Person class’ instance method set eye color, making effective use of recursion.

def set_eye_color(self, my_color, parent_color):

"""Sets the eye_color for the entire family reachable by self.

eye_color of self is set to my_color

eye_color of self's parents is set to parent_color

eye_color of self's grandparents is set to my_color

... and so forth (color alternates with each generation)

Precondition:

- everyone reachable by self currently has eye_color "unknown"

- everyone in the family is reachable only once

- my_color, parent_color are non-empty, unique strings

Returns nothing.

"""

self.eye_color = my_color

if self.p1 != None:

self.p1.set_eye_color(parent_color, my_color)

if self.p2 != None:

self.p2.set_eye_color(parent_color, my_color)

Page 9

6. Debugging. Consider the following code:

1 class Player:

2

3 def __init__(nam):

4 self.name = nam

5

6 class Team:

7

8 def __init__(team, name, player_names=None):

9 team.name = name

10 team.players = []

11 if player_names == None:

12 player_names = []

13 for pname in player_names:

14 team.addPlayer(pname)

15

16 def makePlayer(self, name):

17 return Player(name)

18

19 def addPlayer(self, name):

20 p = self.makePlayer(name)

21 self.players.append(p)

22 return p

23

24 t1 = Team("Princeton Revolution", ["Angela Guan"])

When the above code is run in Python, the following error is reported:

Traceback (most recent call last):

File "team.py", line 24, in <module>

t1 = Team("Princeton Revolution", ["Angela Guan"])

File "team.py", line 14, in __init__

team.addPlayer(pname)

File "team.py", line 20, in addPlayer

p = self.makePlayer(name)

File "team.py", line 17, in makePlayer

return Player(name)

TypeError: __init__() takes 1 positional argument but 2 were given

(a) [3 points] Fix the code to remove only the above error. Fix only the problem that
directly causes the above error message. Mark your fix(es) with the label FIX1.

need to add self as first parameter to Player. init () on line 2

Page 10

26 class NumberedPlayer(Player):

27

28 def __init__(self, name, n): # override Player method

29 super().__init__(name)

30 self.num = n

31

32 class SoccerTeam(Player):

33

34 def __init__(self, name, player_names=None):

35 super().__init__(name, player_names)

36 self.next_num = 0

37

38 def makePlayer(self, name): # override Team method

39 p = NumberedPlayer(name, self.next_num)

40 self.next_num += 1

41 return p

42

43 t2 = SoccerTeam("Spurs", ["Timo Werner"])

After fixing the error, you add the above code: two subclasses and 1 new line of code that
uses them. When the new code is run in Python, the following error is reported:

Traceback (most recent call last):

File "team.py", line 43, in <module>

t2 = SoccerTeam("Spurs", ["Timo Werner"])

File "team.py", line 35, in __init__

super().__init__(name, player_names)

TypeError: __init__() takes 2 positional arguments but 3 were given

(b) [3 points] Fix the code to remove only this new error. Fix only the problem that
directly causes to the new error message. Mark your fix(es) with the label FIX2.

Line 32: SoccerPlayer should inherit from Player not Team (The argument count is off,
because the wrong init method is being inherited.)

After fixing the error, you rerun the code and the following error is reported:

Traceback (most recent call last):

File "team.py", line 43, in <module>

t2 = SoccerTeam("Spurs", ["Timo Werner"])

File "team.py", line 35, in __init__

super().__init__(name, player_names)

File "team.py", line 14, in __init__

self.addPlayer(pname)

File "team.py", line 20, in addPlayer

p = self.makePlayer(name)

File "team.py", line 39, in makePlayer

p = NumberedPlayer(name, self.next_num)

AttributeError: 'SoccerTeam' object has no attribute 'next_num'

(c) [3 points] Fix the code to remove only this new error. Fix only the problem that
directly causes to the new error message. Mark your fix(es) with the label FIX3.

need to swap lines 35 and 36 so that self.next num exists for the init method to use.

Page 11

7. [16 points] The code below runs to completion without errors. Simulate running the code,
drawing only the Call Stack. Begin your drawings at line 27. Stop your simulation after
Python finishes executing either line 17 or line 21 (whichever it reaches first) and reaches the
comment # STOP HERE either on line 18 or 22. At the stopping point, the instruction counter
of the call frame should have either the value 19 or 23. For method call frames, give the method
name as className.methodName(), since we need to know which class’s method is being called.
You do not need to draw the Heap or the Global Space, but assume that d in the Global space
is assigned the value id1 on line 25.

1 class A: CALL STACK

2

3 def zelda(e, x):

4 d = e.ganon(3)

5 return x + 1

6

7 def ganon(self, d):

8 return 10 + d

9

10 class B(A):

11

12 def ganon(e, f):

13 return "hyrule"

14

15 def link(self, d):

16 if d:

17 self.link(False)

18 # STOP HERE

19 d = 4

20 else:

21 self.zelda(int(d))

22 # STOP HERE

23 d = 5

24

25 d = B() # d is assigned id1

26 # START DRAWING HERE

27 d.link(True)

Page 12

Page 13

8. [14 points] Implement this function, using a while loop. Do not use break or continue.

def process_donations(goal, donations):

""" Given a fundraising `goal` and an int list of `donations`,

Returns True if the goal is met and False if the goal is not met.

ALSO, the donations list must be modified as follows:

`donations` are processed one at a time, starting with index 0.

If the entire donation is needed to meet the fundraising

goal, the donation is removed from the list.

If the goal is met using only part of the donation at index 0, the needed

amount is subtracted from this element; the rest of the list remains untouched.

EXAMPLES:

goal: 20 --> return True (goal met, 2 donations used)

donations: [10,10,10] donations now looks like: [10]

goal: 10 --> return False (goal not met, all used)

donations: [5] donations now looks like: []

goal: 8 --> return True (goal met, partial used)

donations: [5,5,5] donations now looks like: [2,5]

Precondition: goal: int >= 0

donations: a (possibly empty) list of positive integers """

while goal > 0 and donations != []:

if (donations[0] <= goal):

goal -= donations[0]

donations.pop(0)

else:

donations[0] -= goal

goal = 0

return True

return goal == 0

Alternate Solution #1

if len(donations) == 0:

return goal == 0

while len(donations) and goal > 0:

curr_donation = donations[0]

if goal < curr_donation:

donations[0] -= goal

return True

donations.pop(0)

if goal == curr_donation:

return True

goal -= curr_donation

return False

Page 14

9. [6 points] Visualizing Inheritance. For this question, you will be shown the state of memory
before a single assignment statement is executed. Modify the drawing to show how memory
changes after that single assignment statement has been executed. If at any point an error is
thrown, please write ERROR next to the assignment statement; only draw the changes to
memory that would occur before the error occurs.

Each part is independent.
Notice: there is no Call Stack.
To the right is an example:

Page 15

10. Multiple Choice. Please provide only 1 answer. If you provide 2, we will only grade the first.

(a) [2 points] Which statement about inheritance in Python is true?

(A) It isn’t possible to for a subclass to provide its own implementation of a method and
also call the parent class method of the same name.

(B) The identifier of an instance object can be used to assign a value to a class attribute.

(C) A Class name can be used to access an attribute of an instance of that class.

(D) The bottom up rule looks for attributes starting with an instance folder and then
moving to (possibly many) class folders.

(E) A subclass needs to implement its own init method.

Correct Answer: D

(b) [2 points] Which statement about Python is true?

(A) A Python list can only contain elements of the same data type.

(B) It’s possible that Python evaluates the expression x and y without ever evaluating y.

(C) super().super() is one way to reach the superclass of a superclass of an object.

(D) When executing an assignment statement, Python first finds and/or creates a variable
that will be assigned the value on the righthand side.

(E) Appending an element to a list changes the identifier of the list.

Correct Answer: B

(c) [2 points] Which statement about Merge Sort is true?

(A) The base case of the Merge Sort algorithm sorts two lists of size 1.

(B) In Merge Sort, doubling the list doubles the time it takes to sort the list.

(C) To sort 1 million integers using Merge Sort, Python needs room in memory to store
a minimum of 2 million integers.

(D) Merge Sort is just as fast at sorting as Insertion Sort.

(E) Merge Sort is implemented with nested for loops.

Correct Answer: C

(d) [2 points] Which statement about Linear Search is true?

(A) To find the element x in a list of n elements, Linear Search will inspect all n elements.

(B) Linear Search can find elements in a list more quickly if the list is sorted.

(C) Insertion Sort’s push down function is essentially Linear Search on a sorted list.

(D) In Linear Search, doubling the list size quadruples the expected time of the search.

(E) Linear Search is faster than Binary Search.

Correct Answer: C

Page 16

